Hostname: page-component-8448b6f56d-xtgtn Total loading time: 0 Render date: 2024-04-17T07:33:44.945Z Has data issue: false hasContentIssue false

Copper CVD Reactions of Cu(I)(hfae)(vtms) Adsorbed on TiN

Published online by Cambridge University Press:  22 February 2011

K. V. Guinn
Affiliation:
AT&T Bell Laboratories, 600 Mountain Ave., Murray Hill, NJ 07974
V. M. Donnelly
Affiliation:
AT&T Bell Laboratories, 600 Mountain Ave., Murray Hill, NJ 07974
M. E. Gross
Affiliation:
AT&T Bell Laboratories, 600 Mountain Ave., Murray Hill, NJ 07974
F. A. Baiocchi
Affiliation:
AT&T Bell Laboratories, 600 Mountain Ave., Murray Hill, NJ 07974
I. Petrov
Affiliation:
Material Science Dept., University of Illinois, Urbana, IL 61801
J. E. Greene
Affiliation:
Material Science Dept., University of Illinois, Urbana, IL 61801
Get access

Abstract

We have studied the thermal decomposition of a Cu MOCVD precursor, hexafluoroacetylacetonate copper vinyl trim ethylsilane (CuI (hfac)(vtms)), on both air-oxidized and N2 ion beam sputter-annealed single crystal (100) and polycrystalline TiN surfaces. Dosing TiN with CuI(hfac)(vtms) at 25°C results in chemisorption of CuIhfac) and desorption of vtms. On oxidized surfaces, litle or no decomposition of CF3 groups is detected at room temperature, while on sputter-annealed polycrystalline and single crystal surfaces, a small amount of decomposition is indicated by a CF2 feature in the C(1s) X-ray photoelectron spectroscopy (XPS) spectrum, and a low-binding energy fluoride in the F(1s) spectrum. Between 100 and 250°C, CuI(hfac) decomposes to evolve gaseous products and leaves Cu, F, and C on the surface. Further heating leads to diffusion of Cu into the TiN, apparently enhanced by simultaneous diffusion of F. Decomposition of the hfac CF3 groups at elevated temperature is independent of the nature of the TiN surface (i.e. polycrystalline vs. (100), or clean vs. oxidized). However, Cu diffusion depends strongly on the surface preparation. The onset of Cu diffusion into oxidized polycrystalline, clean polycrystalline, and clean single crystal (100) TiN occurs at 250, 320, and 430°C, respectively.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Arita, Y., Awaya, N., Ohno, K. and Sato, M., Proc. IEEE Intl. Electron. Dev. Mater. Conf. p. 39, (San Francisco 1990).Google Scholar
2. Gardener, D.S., Onuki, J., Kudoo, K., and Misawa, Y., Proc. 8th Intl. IEEE VMLSI Multilevel Intercon. Conf., p. 99 (1991).Google Scholar
3. Miller, R.J. and Gangulee, A., Thin Solid Films, 69, 379 (1980).Google Scholar
4. Cho, J.S.H., Kang, H.-K., Beiley, M.A., Wong, S.S., and Ting, C.H., Symp. IEEE Electron Device Lett., 433 (1992).Google Scholar
5. Tsai, J.C.C. in VLSI Technology, ed. Sze, S. (McGraw-Hill, NY 1988), pp. 307–8.Google Scholar
6. Olowafe, J.O., Li, J., and Mayer, J.W., J. Appl. Phys. 68, 6207 (1990).Google Scholar
7. Olowafe, J.O., Li, J., Mayer, J.W., and Colgan, E.G., Appl. Phys. Lett. 58, 469 (1991).Google Scholar
8. Wang, S.-Q., Raaijmakers, I., Burrow, B.J., Sumar, S., Redkar, S., and Kim, K.-B., J. Appl. Phys. 68, 5176 (1990).Google Scholar
9. (a) Norman, J.A.T., Proc. Schumacher 3rd Dielectrics and CVD Metal. Symp., pp. 195220 (San Diego, 1991);Google Scholar
(b) Norman, J.A.T., Muratore, B.A., Dyer, P.N., Roberts, D.A., and Hochberg, A.K., J. Phys. IV 1, C2/271 (1991).Google Scholar
10. Jain, A., Chi, K.-M., Kodas, T.T., Hampden-Smidi, M.J., Farr, J.D., and Paftett, M.F.. Chem Mater. 3, 995 (1991).Google Scholar
11. Reynolds, S.K., Smart, C.J., Baran, E.F., Baum, T.H., Larson, C.E., and Brock, P.J., Appl. Phys. Lett. 59, 2332 (1991).Google Scholar
12. Jain, A., Chi, K.-M., Hampden-Smith, M.J., Kodas, T.T., Farr, J.D., and Paffett, M.F., J. Mater. Res. 7, 261 (1992).Google Scholar
13. Donnelly, V.M. and Gross, M.E., J. Vac. Sci. Technol. 1, in pressGoogle Scholar
14. McCaulley, J. A., McCrary, V. R., and Donnelly, V. M., J. Phys. Chem. 93, 1014 (1989).Google Scholar
15. McCaulley, J. A., and Donnelly, V. M., J. Chem. Phys. 91, 4330 (1989).Google Scholar
16. Donnelly, V. M. and McCaulley, J. A., Surf. Sci., 238, 34 (1990).Google Scholar
17. Donnelly, V. M. and McCaulley, J. A., Surf. Sci. Lett., 235, L333 (1990).Google Scholar
18. Donnelly, V. M. and McCaulley, J. A., J. Vac. Sci. Technoi, in press (1991).Google Scholar
19. Hultman, L., Barnett, S.A., Sundgren, J.-E., and Greene, J.E., J. Crystal Growth 92, 639 (1988).Google Scholar
20. In these measurements of atomic concentration, the signals were corrected for inelastic scattering.Google Scholar
21. In these measurements of relative coverages of adsorbates, no attenuation of signals due to inelastic scattering was assumed.Google Scholar
22. Practical Surface Analysis by Auger and X-ray Photoelectron Spectroscopy, edited by Briggs, D. and Seah, M.P., (John Wiley & Sons, NY 1983).Google Scholar
23. Handbook of X-ray Photoelectron spectroscopy, edited by Muilenburg, G.E., (Perkin-Elmer Corporation, Eden Prarie, MN, 1979).Google Scholar