Skip to main content Accessibility help

Controlled Carbon Nanotube Networks and its Corresponding Channel Effect at High Bias

  • Jun Huang (a1), Bangalore Kiran Rao (a2), Harindra Vedala (a3), Do-Hyun Kim (a4), Minhyon Jeon (a5), Wanjun Park (a6) and Wonbong Choi (a7)...


Geometrically controlled single-walled carbon nanotube (SWNT) and multi-walled carbon nanotube (MWNT) networks were fabricated by a width confinement technique to characterize their electrical characteristics. The results demonstrated non-linear resistance decay with the number of conducting channels. The current-voltage characteristics at high field were studied until the electrical breakdown took place. Large current (∼2 mA), low resistance (∼5 KΩ) and current densities exceeding ∼108 A/cm2 were demonstrated from multi-channel MWNT networks confined in a 10 μm × 15 μm trench. Additionally, chronological SEM imaging was used to identify the breakdown sequences in the carbon nanotube networks, which revealed a strong tendency for CNT breakdown to occur in the vicinity of CNT-CNT intersections. Our results offer insights for interconnect applications using CNT networks.



Hide All
1. Snow, E. S., Novak, J. P., Campbell, P. M. et al., Appl. Phys. Lett. 82, 2145 (2003).
2. Stadermann, M., Papadakis, S. J., Falvo, M. R. et al., Phys. Rev. B 69 (2004).
3. Naeemi, A. and Meindl, J. D., IEEE Electron Dev. Lett. 26, 476 (2005).
4. Naeemi, A. and Meindl, J. D., IEEE Electron Dev. Lett. 26, 544 (2005).
5. Naeemi, A., Sarvari, R., and Meindl, J. D., IEEE Electron Dev. Lett. 26, 84 (2005).
6. Kim, P., Shi, L., Majumdar, A. et al., Phys. Rev. Lett. 87, 215502 (2001).
7. Collins, P. G., Hersam, M., Arnold, M. et al., Phys. Rev. Lett. 86, 3128 (2001).
8. Srivastava, N., Joshi, R. V., and Banerjee, K., IEEE International Electron Devices Meeting (IEDM), 257 (2005).
9. Kumar, S., Murthy, J. Y., and Alam, M. A., Phys. Rev. Lett. 95, 066802 (2005).
10. Bachtold, A., Fuhrer, M. S., Plyasunov, S. et al., Phys. Rev. Lett. 84, 6082 (2000).
11. Hu, L., Hecht, D. S., and Gruner, G., Nano Lett. 4, 2513 (2004).
12. Kim, D. H., Huang, J., Shin, H. K., Roy, S., Choi, W. B., Nano Lett. 6, 2821 (2006).
13. Raychowdhury, A. and Roy, K., Proc. of Int. Conf. on Comp Design 4, 237 (2004).
14. Javey, A., Guo, J., Wang, Q. et al., Nature 424, 654657 (2003).
15. Berger, C., Yi, Y., Wang, Z.L. et al., Appl. Phys. A 74, 363 (2002).
16. Huang, J. Y., Chen, S., Jo, S. H. et al., Phys. Rev. Lett. 94, 236802 (2005).
17. Yao, Z., Kane, C. L., and Dekker, C., Phys. Rev. Lett. 84, 2941 (2000).
18. Javey, A., Guo, J., Paulsson, M. et al., Phys. Rev. Lett. 92, 106804 (2004).
19. Minot, E. D., Yaish, Y., Sazonova, V. et al., Phys. Rev. Lett. 90, 156401156404 (2003).
20. Fuhrer, M. S., Nygard, J., Shih, L. et al., Science 288, 494 (2000).
21. Collins, P. G., Arnold, M. S., and Avouris, P., Science 292, 706 (2001).



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed