Hostname: page-component-8448b6f56d-xtgtn Total loading time: 0 Render date: 2024-04-19T22:02:47.249Z Has data issue: false hasContentIssue false

Controlled Assembly of Monodisperse ε-Cobalt-Based Nanocrystals

Published online by Cambridge University Press:  21 February 2011

S. Sun
Affiliation:
IBM T. J. Watson Research Center, Yorktown Heights, NY 10598, ssun@us.ibm.com
C. B. Murray
Affiliation:
IBM T. J. Watson Research Center, Yorktown Heights, NY 10598
H. Doyle
Affiliation:
IBM T. J. Watson Research Center, Yorktown Heights, NY 10598
Get access

Abstract

General synthetic routes to monodisperse c-cobalt (β-Mn type phase) nanocrystals (ε-Co) and controlled assembly of these nanocrystals are presented in this paper. The ε-Co particles are obtained by superhydride reduction of cobalt chloride (anhydrous or hexahydrate) in a high temperature solution phase (200°C) in the presence of a combination of long chain diol, oleic acid and trialkylphosphine. Monodisperse nanocrystals are isolated by size selective precipitation. As synthesized cobalt particles are each a single crystal with a complex cubic structure related to the beta phase of elemental manganese (β-Mn). Self-assembly of these uniform cobalt particles on solid substrates is induced by evaporation of the carrier solvent producing 2-D and 3-D magnetic superlattices. Annealing of assembled ε-Co nanocrystal arrays converts them to the hcp cobalt crystal arrays. The inter-particle distance can be adjusted by selected thermal treatments or by chemical ligand exchange. This control over particle dimensions, crystallinity and assembly offers a model system for the study of ultra-high density recording media.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Murdock, E. S., Simmons, R. F., Davison, R., IEEE Trans. Mag., 28, 3078 (1992).Google Scholar
2. Yogi, T., Nguyen, T. A., IEEE Trans. Mag., 29, 307 (1993).Google Scholar
3. Lu, P.-L., Charap, S. H., IEEE Trans. Mag., 30, 4230 (1994).Google Scholar
4. Lambeth, D. N., Velu, E. M. T., Bellesis, G. H., Lee, L., Laughlin, D. E., J. Appl. Phys., 79, 4496 (1996).Google Scholar
5. Chien, C. L., J. Appl. Phys. 69, 5267 (1991).Google Scholar
6. Berkowitz, A. E., Mitchell, J. R., Carey, M. J., Young, A. P., Zhang, S., Spada, F. E., Parker, F. T., Hutten, A., Thomas, G., Phys. Rev. Lett., 68, 3745 (1992).Google Scholar
7. Xiao, J. Q., Jiang, J. S., Chien, C. L., Phys. Rev. Lett., 68, 3749 (1992).Google Scholar
8. Pogorelov, Y. G., Azevedo, M. M. P. de, Sousa, J. B., Phys. Rev. B, 58, 425 (1998).Google Scholar
9. Takahashi, S., Maekawa, S., Phys. Rev. Lett., 80, 1758 (1998).Google Scholar
10. Yamada, S., Kikutani, T., Aoki, N., Hori, H., Phys. Rev. Lett., 81, 5422 (1998).Google Scholar
11. Peng, D. L., Sumiyama, K., Yamamuro, S., Hihara, T., Konno, T. J., Appl. Phys. Lett., 74, 76 (1999).Google Scholar
12. Andres, R. P., Bein, T., Dorogi, M., Feng, S., Henderson, J. I., Kubiak, C. P., Mahoney, W., Osifchin, R. G., Reifenberger, R., Science, 272, 1323 (1996).Google Scholar
13. Bezryadin, A., Dekker, C., Schmid, G., Appl. Phys. Lett., 71, 1273 (1997).Google Scholar
14. Davidovic, D., Tinkham, M., Appl. Phys. Lett., 73, 3959 (1998).Google Scholar
15. Sun, S., Murray, C. B., J. Appl. Phys., 85, 0000 (1999).Google Scholar
16. Andres, R. P., Bielefeld, J. D., Henderson, J. I., Janes, D. B., Kolagunta, V. R., Kubiak, C. P., Mahoney, W. J., Osifchin, R. G., Science, 273, 1690 (1996).Google Scholar
17. Fink, J., Kiely, C. J., Bethell, D., Schiffrin, D. J., Chem. Mater., 10, 922 (1998).Google Scholar
18. Harfenist, S. A., Wang, Z. L., Whetten, R. L., Vezmar, I., Alvarez, M. M., Adv. Mater. 9, 817 (1997).Google Scholar
19. Korgel, B. A., Fullam, S., Connolly, S., Fitzmaurice, D., J. Phys. Chem. B, 102, 8379 (1998).Google Scholar
20. Murray, C. B., Kagan, C. R., Bawendi, M. G., Science, 270, 1335 (1995).Google Scholar
21. Pileni, M. P., Langmuir, 13, 3266 (1997).Google Scholar
22. Collier, C. P., Saykally, R. J., Shiang, J. J., Henrichs, S. E., Heath, J. R., Science, 277, 1978 (1997).Google Scholar
23. Murray, C. B., Norris, D. J., Bawendi, M. G., J. Am. Chem. Soc., 115, 8706 (1993).Google Scholar
24. Schmid, G., Chem. Rev., 92, 1709 (1992).Google Scholar
25. Reetz, M. T., Helbig, W., J. Am. Chem. Soc., 116, 7401 (1994).Google Scholar
26. Reetz, M. T., Quaiser, S. A., Angew. Chem., Int. Ed. Engl., 34, 2240 (1995).Google Scholar
27. Osifchin, R. G., Mahoney, W. J., Bielefeld, J. D., Andres, R. P., Henderson, J. I., Kubiak, C. P., Superlattices and Microstructures, 18, 283 (1995).Google Scholar
28. Harfenist, S. A., Wang, Z. L., Alvarez, M. M., Vezmar, I., Whetten, R. L., J. Phys. Chem., 100, 13904 (1996).Google Scholar
29. Teranishi, T., Miyake, M., Chem. Mater., 10, 594 (1998).Google Scholar
30. Rieke, R. D., Ace. Chem. Res., 10, 301 (1977).Google Scholar
31. Glavee, G. N., Klabunde, K. J., Sorensen, C. M., Hadjapanayis, G. C., Langmuir, 8, 771 (1992).Google Scholar
32. Bonnemann, H., Brijoux, W., Joussen, T., Angew. Chem. Int. Ed. Engl., 29, 273 (1990).Google Scholar
33. Fievet, F., Lagier, J. P., Figlarz, M., MRS Bulletin, 29 (1989).Google Scholar
34. Becker, J. A., Schafer, R., Festag, R., Ruland, W., Wendorff, J. H., Pebler, J., Quaiser, S. A., Helbig, W., Reetz, M. T., J. Chem. Phys., 103, 2520 (1995).Google Scholar
35. Hofmann, D., Schindler, W., Kirschner, J., Appl. Phys. Lett., 73, 3279 (1998).Google Scholar
36. Bentzon, M. D., Wonterghem, J. van, Morup, S., Tholen, A., Koch, C. J. W., Phil. Mag., 60, 169 (1989).Google Scholar
37. Suslick, K. S., Fang, M., Hyeon, T., J. Am. Chem. Soc., 118, 11960 (1996).Google Scholar
38. Hong, C.Y., Hsu, C. J., Yao, Y. D., Yang, H. C., J. Appl. Phys., 81, 4257 (1997).Google Scholar
39. Prinz, G. A., Phys. Rev. Lett., 54, 1051 (1985).Google Scholar
40. Dinega, D. P., Bawendi, M. G., Angew. Chem., to be published.Google Scholar