Skip to main content Accessibility help

Controlled and Selective Aggregation of Submicrometer Cu-Crystallites on FIB Sensitized p-Si

  • Adrian Spiegel (a1) and Patrik Schmuki (a2)


Electrochemical deposition of metals and alloys onto metallic substrates plays an important role in many modern technologies. Usually, a photolithographic patterning process is used to produce the desired feature on the substrate surface. An alternative method to patterned metal deposition on semiconductors is presented here: it is based on changing the electrochemical properties of the semiconductor by controlled surface defect creation. A focused ion beam (FIB) was used to introduce defects into p-Si, followed by a selective electrochemical reaction to produce metal structures in the sub-micrometer range.

In this work we study the selective deposition behavior of Cu on FIB sensitized surface locations and show that crystallite growth follows a three- dimensional growth law. Crystallites grow very rapidly in a first phase and reach a size of roughly 200nm after 5s. Factors determining nucleation, growth, and coalescence of metal clusters are identified and investigated.



Hide All
[1] Andricacos, P. C., Uzoh, C., Dukovic, J. O., Horkans, J., and Deligianni, H., IBM J. Res. Develop. 42, 567 (1998).
[2] Edelstein, D. C., in Proc. SPIE – Int. Soc. Opt. Eng.: Microelectronic Device Technology II, PV 3506, SPIE Proceedings Series, p. 8 (1998).
[3] Ullmann, R., Will, T., and Kolb, D. M., Chem. Phys. Lett. 209, 238 (1993).
[4] Santinacci, L., Djenizian, T., and Schmuki, P., J. Electrochem. Soc. 148, C640 (2001).
[5] Fuhrmann, H., Candel, A., Döbeli, M., and Mühle, R., J. Vac. Sci. Technol. B 17, 2443 (1999).
[6] Djenizian, T., Santinacci, L., and Schmuki, P., J. Electrochem. Soc. 148, C197 (2001).
[7] Spiegel, A., Erickson, L. E., and Schmuki, P., J. Electrochem. Soc. 147, 2993 (2000).
[8] Schmuki, P., Erickson, L. E., Lockwood, D. J., Fraser, J. W., Champion, G., andH. Labbe, J., Appl. Phys. Lett. 72, 1039 (1998).
[9] Schmuki, P. and Erickson, L. E., Phys. Rev. Lett. 85, 2985 (2000).
[10] Schmuki, P., Erickson, L. E., and Champion, G., J. Electrochem. Soc. 148, C177 (2001).
[11] Gerischer, H., Z. Phys. Chem. 27 (1961).
[12] Morrison, S. R., Electrochemistry at semiconductor and oxidized metal electrodes, (Plenum Press, New York 1980).
[13] Oskam, G., Long, J. G., Natarajan, A., and Searson, P. C., J. Phys. D: Appl. Phys. 31, 1927 (1998).
[14] Ziegler, J. C., Reitzle, A., Bunk, O., Zegenhagen, J., and Kolb, D. M., Electrochim. Acta 45, 4599 (2000).
[15] Schmuki, P., Erickson, L. E., and Lockwood, D. J., Phys. Rev. Lett. 80, 4060 (1998).
[16] Schmuki, P., Erickson, L. E., and Lockwood, D. J., J. Por. Mat. 7, 233 (2000).
[17] Hausmann, S., Bischoff, L., Voelskow, M., Teichert, J., Moller, W., and Fuhrmann, H., Nucl. Instr. Methods B 148, 610 (1999).
[18] Park, Y. K., Takai, M., Lehrer, C., Frey, L., and Ryssel, H., Nucl. Instr.MethodsB 158, 493 (1999).
[19] Vetterli, D., Döbeli, M., Mühle, R., Nebiker, P. W., and Musil, C. R., Microelectronic Engineering 27, 339 (1995).
[20] Schmidt, W. U., Alkire, R. C., and Gewirth, A. A., J. Electrochem. Soc. 143, 3122 (1996).
[21] Natter, H. and Hempelmann, R., J. Phys. Chem. 100, 19525 (1996).
[22] Suter, T., Peter, T., and Böhni, H., Mater. Sci. Forum 192–194, 25 (1985).
[23] Böhni, H., Suter, T., and Assi, F., Surface and Coatings Technology 130, 80 (2000).


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed