Hostname: page-component-7bb8b95d7b-fmk2r Total loading time: 0 Render date: 2024-09-26T12:15:53.084Z Has data issue: false hasContentIssue false

Controllable Synthesis of ZnO Nanorod Arrays via Simple Solution-Based Method

Published online by Cambridge University Press:  01 February 2011

Patcharee Charoensirithavorn
Affiliation:
patchare@iae.kyoto-u.ac.jp, Molecular Assemblies Design Research Section, Institute of Advance Energy, Kyoto University, Uji, Kyoto, 6110011, Japan, 0774-38-3504, 0774-38-3508
Susumu Yoshikawa
Affiliation:
s-yoshi@iae.kyoto-u.ac.jp, Kyoto University, Institute of Advanced Energy, Uji, Kyoto, 6110011, Japan
Get access

Abstract

Here we present a convenient solution-based method, which can afford a procedure to easily fabricate highly oriented ZnO nanorods on substrate at relatively low temperatures. The as-synthesized products have been characterized by scanning electron microscopy (SEM) and X-Ray diffraction (XRD). The results revealed that a densely packed and perpendicularly oriented single-crystalline ZnO nanorod arrays grew vertically on the fluorine-doped SnO2 transparent conducting oxide (FTO) glass substrates. In addition, we found that the length of the nanorod could be freely modified by controlling the solution temperature.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Pan, Z.W., Dai, Z.R., Wang, Z.L., Science 291 (2001), 1947.Google Scholar
[2] Park, W.I., Yi, G.C., Kim, J.W., Park, S.M., Appl. Phys. Lett. 82 (2003), 4358.Google Scholar
[3] Li, Y., Bando, Y., Golderg, D., Adv. Mater. 15 (2003), 1294.Google Scholar
[4] Minami, T., J.Vac.Sci.Technol.A 17 (1999), 1765.Google Scholar
[5] Rensmo, H., Keis, K., Lindstrom, H., Sodergren, S., Solbrand, A., Hagfeldt, A., Lindquist, S.E., Wang, L.N. and Muhammed, M., J.Phys. Chem.B 101 (1997), 101, 2598.Google Scholar
[6] WeiBenrieder, K.S. and Muller, J., Thin Solid films 300 (1997), 30.Google Scholar
[7] Mo, C.M., Li, Y.H., Lin, Y.S., Zhang, Y. and Zhang, L.P., J.Appl.Phys. 83 (1998), 4389.Google Scholar
[8] Huang, M.H., Muo, S., Feick, H., Yan, H., Wu, Y., Kind, H., Weber, E., Russo, R., Yang, P., Science 292 (2001), 1897.Google Scholar
[9] Wu, J.-J., Liu, S.-C., Adv. Mater. 14 (2002), 215.Google Scholar
[10] Liu, R., Vertegel, A.A., Bohannan, E.W., Sorenson, T.A., Switzer, J.A., Chem. Mater. 13 (2001), 508.Google Scholar
[11] Guo, M. et al., J. Solid State Chem. 178 (2005), 1864.Google Scholar
[12] Li, W.-J., Shi, E.-W., Zhong, W.-Z., Yin, Z.-W., J. crystal growth, 203 (1999) 186 Google Scholar