Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-19T09:30:14.189Z Has data issue: false hasContentIssue false

Control of Valence States in ZnO by CoDoping Method

Published online by Cambridge University Press:  10 February 2011

T. Yamamoto
Affiliation:
Electronic and Photonic Systems Engineering Department, Kochi University of Technology, Tosayamada-cho, Kochi 782-8502, JAPAN, yamateko@ele.kochi-tech.ac.jp
H. -K. Yoshida
Affiliation:
Condensed Matter Physics Department, ISIR, Osaka University, Osaka 567-0047, JAPAN
Get access

Abstract

We have investigated the electronic structures of p- or n-type doped ZnO based on ab initio electronic band structure calculations in order to control valence states in ZnO for the fabrication of low-resistivity p-type ZnO. We find unipolarity in ZnO; p-type doping using Li or N increases the Madelung energy while n-type doping using Al, Ga, In or F species decreases the Madelung energy. We have proposed materials design: codoping using N acceptors and reactive codopants, Al or Ga, enhances electric properties in p-type codoped ZnO. It has been already verified by experiments using the N acceptors and Ga reactive donor codopants. We find a very weak repulsive interaction between Li acceptors and the delocalization of the Li-impurity states for Lidoped ZnO, in contrast with the case of N-doped ZnO. On the other hand, we find the compensation mechanism by the formation of 0 vacancy in the vicinity of the Li-acceptor sites. We propose a group VII element, F species, as a promising candidate for use of the reactive codopant as for Li-doped ZnO in order to realize low-resistivity p-type ZnO.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Yu, P., Tang, Z. K., Wong, G.K. L., Kawasaki, M., Ohtomo, A., Koinuma, H. and Segawa, Y: Proc. 23th Int. Conf. Physics of Semiconductors, Berlin, 2, p. 1453 (1996).Google Scholar
2 Segawa, Y, Ohtomo, A., Kawasaki, M., Koinuma, H., Tang, Z. K., Yu, P. and Wong, G. K. L.: Phys. Status Solidi (b) 202, p. 669 (1997).Google Scholar
3 Yamamoto, T. and Katayama-Yoshida, H., unpublished.Google Scholar
4 Minami, T., Nanto, H. and Takata, S., Jpn. J. Appl. Phys. 23, p. L280 (1984).Google Scholar
5 Minami, T., Sato, H., Nanto, H. and Takata, S., Jpn. J. Appl. Phys. 24, p. L781 (1985).Google Scholar
6 Minami, T., Sato, H., Nanto, H. and Takata, S., Jpn. J. Appl. Phys. 25, p. L776 (1986).Google Scholar
7 Hu, J. and Gordon, R. G.: Solar Cells 30, p. 437 (1991).Google Scholar
8 Kasuga, M. and Ogawa, S., Jpn. J. Appl. Phys. 22, p. 794 (1983).Google Scholar
9 Sato, Y and Sato, S., Thin Solid Films 281–282, p. 445 (1996).Google Scholar
10 Minegishi, K., Koiwai, Y, Kikuchi, Y, Yano, K., Kasuga, M. and Shimizu, A, Jpn. J. Appl. Phys. 36, p. L1453 (1997).Google Scholar
11 Yamamoto, T. and Katayama-Yoshida, H. in Electronic structure ofp-type CulnS2 , edited by Ginley, D., Catalano, A, Schock, H. W, Eberspcher, C., Peterson, T. M. and Wada, T. (Mater. Res. Soc. 426, Pittsburgh, PA 1996), p. 201206.Google Scholar
12 Yamamoto, T. and Katayama-Yoshida, H., Solar Energy Materials and Solar Cells, 49, p. 391 (1997).Google Scholar
13 Yamamoto, T. and Katayama-Yoshida, H. in A Codoping Method in CuInS2 Proposed by ab initio Electronic-Structure Calculations, Inst. Phys. Conf. Ser. 152, pp. 3741 (1998). 11th Int. Conf. Ternary and Multinary Compounds, Salford, 1997. Invited.Google Scholar
14 Yamamoto, T. and Katayama-Yoshida, H., Jpn. J. Appl. Phys. 36, p. L180 (1997).Google Scholar
15 Yamamoto, T. and Katayama-Yoshida, H. in Control of Valence States by a Codoping Method in P-Type Gan Materials, edited by Abernathy, C. A, Amano, H. and Zolper, J. C. (Mater. Res. Soc. Proc. 468, Pittsburgh, PA 1997) p. 105110.Google Scholar
16 Yamamoto, T. and Katayama-Yoshida, H., Journal of Crystal Growth, 189/190, p. 532 (1998).Google Scholar
17 Katayama-Yoshida, H. and Yamamoto, T., phys. Stat. Sol. (b) 202, p. 763(1997).Google Scholar
18 Yamamoto, T. and Katayama-Yoshida, H. in Role of n-type Codopants on Enhancing p-type Dopants Incorporation in p-type Codoped ZnSe, edited by (Mater. Res. Soc. Proc. 510, Pittsburgh, PA 1998), p. 6772.Google Scholar
19 Yamamoto, T. and Katayama-Yoshida, H., Jpn. J. Appl. Phys. 37, p. L910 (1998).Google Scholar
20 Yamamoto, T. and Katayama-Yoshida, H., Jpn. J. Appl. Phys. 38, p. L166 (1999).Google Scholar
21 Yamamoto, T. and Katayama-Yoshida, H., Physica B, 273–274, p. 113 (1999).Google Scholar
22 Brandt, O., Yang, H., Kostial, H. and Ploog, K. H., Appl. Phys. Lett, 69, p. 2707 (1996).Google Scholar
23 Joseph, M., Tabata, H. and Kawai, T., Jpn. J. Appl. Phys. 38, p. L1205 (1999).Google Scholar
24 Kohn, W and Sham, L. J.: Phys. Rev. 140, p. A1133 (1965).Google Scholar
25 Hedin, L. and Lundquist, B. I.: J. Phys. C4, p. 3107 (1971).Google Scholar
26 Barth, U. von and Hedin, L.: J. Phys. C 5, p. 1629 (1972).Google Scholar
27 Williams, A R., Kiubler, J. and Gelatt, C. D.: Phys. Rev. B 19, p. 6094 (1979).Google Scholar
28 Schroer, P., Kriger, P. and Pollmann, J.: Phys. Rev. 47, p. 6971 (1993).Google Scholar
29 Massidda, S., Resta, R., Posternak, M. and Baldereschi, A: Phys. Rev. 52, p. R16977 (1995).Google Scholar
30 Onodera, A, Yoshio, K., Satoh, H., Yamashita, H., Sakagami, N., Jpn. J. Appl. Phys. 37, p. 5315 (1998).Google Scholar
31 Kolb, E.D. and Laudise, R.A., J. Am. Ceram. Soc. 49, p. 302 (1966).Google Scholar
32 Onodera, A, Tamaki, A., Kawamura, Y, Sawada, T. and Yamashita, H., Jpn. J. Appl. Phys. 35, p. 5160 (1996).Google Scholar
33 Joseph, M., Tabata, H. and Kawai, T., Appl. Phys. Lett, 74, p. 2534 (1999).Google Scholar