Hostname: page-component-7479d7b7d-qlrfm Total loading time: 0 Render date: 2024-07-11T23:31:35.008Z Has data issue: false hasContentIssue false

Control of Valence States by a Codoping Method in P-Type GaN Materials

Published online by Cambridge University Press:  10 February 2011

T. Yamamoto
Affiliation:
Department of Condensed Matter Physics, Institute of Scientific and Industrial Research, Osaka University, 8–1 Mihogaoka, Ibaraki 567, Japan, tetsu36@sanken.osaka-u.ac.jp Department of Computational Science, Asahi Chemical Industry Co., Ltd., 2–1 Samejima, Fuji 416, Japan
H. Katayama-Yoshtoa
Affiliation:
Department of Condensed Matter Physics, Institute of Scientific and Industrial Research, Osaka University, 8–1 Mihogaoka, Ibaraki 567, Japan, tetsu36@sanken.osaka-u.ac.jp PRESTO, Japan Science and Technology Corporation, Kawaguchi, Saitama 332, Japan
Get access

Abstract

We propose a new valence control method, the “codoping method (using both n- and p-type dopants at the same time)”, for the fabrication of low-resistivity p-type GaN crystals based on the ab-initio electronic band structure calculations. We have clarified that while doping of acceptor dopants, BeGa and MgGa, leads to destabilization of the ionic charge distributions in p-type GaN crystals, doping of Sica or ON give rise to p-type doped GaN with high doping levels due to a large decrease in the Madelung energy. The codoping of the n- and p-type dopants (the ratio of their concentrations is 1:2) leads to stabilization of the ionic charge distribution inp-type GaN crystals due to a decrease in the Madelung energy, to result in an increase in the net carrier densities.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Yamamoto, T. and Katayama-Yoshida, H. in Electronic structure of p-type CuInS2 . edited by Ginley, D., Catalano, A., Schock, H. W., Eberspacher, C., Peterson, T. M. and Wada, T. (Mater. Res. Soc. Proc. 426, Pittsburgh, Pennsylvania 1996), p. 201206.Google Scholar
2. Yamamoto, T. and Katayama-Yoshida, H., Proc. of the Int. Conf. Shallow Level in Semiconductors (1996), in press.Google Scholar
3. Yamamoto, T. and Katayama-Yoshida, H., Proc. of Photovoltaic Science Engineering Conf. (1996), in press.Google Scholar
4. Yamamoto, T. and Katayama-Yoshida, H., Jpn. J. Appl. Phys. 36, L180 (1997).Google Scholar
5. Amano, H., Ito, M., Hiramatsu, K. and Akasaki, I.: Jpn. J. Appl. Phys. 28, L2112 (1989).Google Scholar
6. Amano, H., Ito, M., Hiramatsu, K. and Akasaki, I.: Inst. Phys. Conf. Ser. 106, p. 825 (1989).Google Scholar
7. Nakamura, S., Mukai, T., Senoh, M. and Iwasa, N.: Jpn. J. Appl. Phys. 31, L139 (1992).Google Scholar
8. Nakamura, S., Mukai, T., Senoh, M. and Iwasa, N.: Jpn. J. Appl. Phys. 31, p. 1258 (1992).Google Scholar
9. Brandt, O., Yang, H., Kostial, H., and Ploog, K. H.: Appl. Phys. Lett. 69, p. 2707 (1996).Google Scholar
10. Kohn, W. and Sham, L. J.: Phys. Rev. 140, A1133 (1965).Google Scholar
11. Hedin, L. and Lundquist, B. I., J. Phys. C4, p. 3107 (1971).Google Scholar
12. von Barth, U. and Hedin, L., J. Phys. C5, p. 1629 (1972).Google Scholar
13. Williams, A. R., Kuebler, J. and Gelatt, C. D.: Phys. Rev. B19, p. 6094 (1979).Google Scholar