Hostname: page-component-8448b6f56d-c4f8m Total loading time: 0 Render date: 2024-04-19T23:46:18.779Z Has data issue: false hasContentIssue false

Contact resistivity of Al/Ti ohmic contacts on p-type ion implanted 4H- and 6H-SiC.

Published online by Cambridge University Press:  11 February 2011

Roberta Nipoti
Affiliation:
CNR- IMM Sezione di Bologna, via Gobetti 101, 40129 Bologna
Francesco Moscatelli
Affiliation:
CNR- IMM Sezione di Bologna, via Gobetti 101, 40129 Bologna
Andrea Scorzoni
Affiliation:
CNR- IMM Sezione di Bologna, via Gobetti 101, 40129 Bologna
Antonella Poggi
Affiliation:
CNR- IMM Sezione di Bologna, via Gobetti 101, 40129 Bologna
Gian Carlo Cardinali
Affiliation:
CNR- IMM Sezione di Bologna, via Gobetti 101, 40129 Bologna
Mihai Lazar
Affiliation:
CNR- IMM Sezione di Bologna, via Gobetti 101, 40129 Bologna
Christophe Raynaud
Affiliation:
CNR- IMM Sezione di Bologna, via Gobetti 101, 40129 Bologna
Dominique Planson
Affiliation:
CNR- IMM Sezione di Bologna, via Gobetti 101, 40129 Bologna
Marie-Laure Locatelli
Affiliation:
CNR- IMM Sezione di Bologna, via Gobetti 101, 40129 Bologna
Jean-Pierre Chante
Affiliation:
CNR- IMM Sezione di Bologna, via Gobetti 101, 40129 Bologna
Get access

Abstract

Al-Ti alloys with 72 wt% Al were employed for the realisation of ohmic contacts on 4×1019 cm-3 p-type ion implanted 4H- and 6H-SiC samples. Contact resistivity characterisations by TLM measurements were done at wafer level in the temperature range 28–290°C. Analysis of the TLM measurements took into account current crowding at the metal pads. More than half of the evaluated contact resistivity reached the minimum value detectable by the used TLM devices, that was slightly higher than 1×10-6 Ωcm2. Above this limit value, contact resistivity decreased for increasing temperature and was spread over a few decades. The maximum contact resistivity at 28°C was 2×10-4 Ωcm2, which changed to 5×10-6 Ωcm2 at 290°C. The thermal behaviour of these TLM structures featured thermionic-field emission conduction.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Crofton, J., Beyer, L., Williams, J. R., Luckowski, E. D., Mohney, S. E., DeLucca, J. M., “Titanium and aluminum-titanium ohmic contacts to p-type SiC,” Solid-State Electron., 41, 1725 (1997).Google Scholar
2. Crofton, J., Mohney, S. E., Williams, J. R., Isaacs-Smith, T., “Finding the optimum Al-Ti alloy composition for use as an ohmic contact to p-type SiC,” Solid-State Electron, 46, 109 (2002).Google Scholar
3. Crofton, J., Barnes, P. A., Williams, J. R., Edmond, J., “Contact resistance measurements on p-type 6H-SiC,” Appl. Phys. Lett., 62, 384 (1993).Google Scholar
4. Ruff, M., Mitlehner, H., Helbig, R., “SiC Devices: Physics and Numerical Simulation, IEEE Trans. Electron Devices 41, 1040 (1994).Google Scholar
5. Scorzoni, A. and Finetti, M., “Metal/semiconductor contact resistivity and its determination from contact resistance measurements”, Material Science Report, 3 no. 2 (1988).Google Scholar
6. Scorzoni, , Finetti, M., Soncini, G. and Suni, I., “Ohmic contact resistance evaluation in silicon planar structures: application to the CoSi2/n+ interface,” Alta Freq 61, 341 (1987).Google Scholar
7. Finetti, , Scorzoni, A. and Soncini, G., “Lateral current crowding effects on contact resistance Measurements in four terminal resistor test patterns,”, IEEE Electron Device Letters, EDL-5, no. 12, 524 (1984).Google Scholar
8. Schuldt, B., “An exact derivation of contact resistance to planar devices”, Solid-State Electronics, 21, 715 (1978).Google Scholar
9. Moscatelli, F., Scorzoni, A., Poggi, A., Cardinali, G. C. and Nipoti, R. “Al/Ti Ohmic Contacts to p-type Ion Implanted 6H-SiC: Mono- and Two-dimensional Analysis of the TLM Data” Accepted for publication in Material Science Forum 2003.Google Scholar
10. Lazar, M., Raynaud, C., Planson, D., Locatelli, M.L., Isoird, K., Ottaviani, L., Chante, J.P., Nipoti, R., Poggi, A., Cardinali, G., “A comparative study of high-temperature aluminium postimplantation annealing in 6H- and 4H-SiC, non uniform temperature effects”, Material Science Forum 389–393, 827 (2002).Google Scholar