Skip to main content Accessibility help
×
Home

Condenser-Transducer Configuration for Improving Radiation Efficiency of Near-Field Optical Transducers

  • Kursat Sendur (a1), Chubing Peng (a1) and William Challener (a1)

Abstract

Near-field radiation efficiency of the ridge waveguide transducer is investigated in the vicinity of a recording magnetic medium. Near-field radiation from a ridge waveguide transducer is expressed in terms of power density quantities. This allows us to quantify the near-field radiation efficiency from the near-field transducer with respect to the input optical power. Finite element method (FEM), which is capable of modeling focused beams, is used to simulate various geometries involving ridge waveguides. The incident electric field near the focal region is determined using a Gaussian beam expression and Richards-Wolf vector field equations for low NA and high NA beams, respectively. First, the ridge waveguide transducer is placed at the focal point of an optical lens system. The maximum value of the absorbed optical power in the recording medium is 1.6*10-4 mW/nm3 for a 100 mW input optical power. Finally, the ridge waveguide is placed adjacent to a solid immersion lens but separated by a low-index dielectric layer. For this case, the maximum value of the absorbed optical power in the recording medium is 7.5*10-4 mW/nm3 for a 100 mW input optical power. The improvement in the transmission efficiency is a result of two factors: 1. Increased incident electric field over the transducer surface due to increased NA of the optical system, 2. Surface plasmon enhancement obtained by placing a low-index dielectric material between the solid immersion lens and ridge waveguide.

Copyright

References

Hide All
1. Hartschuh, A. et al., Phys. Rev. Lett. 38, 1719 (2002).
2. Mansfield, S. M. and Kino, G. S., Appl. Phys. Lett. 57, 2615 (1990).
3. Grober, R. D., Schoelkopf, R. J., and Prober, D. E., Appl. Phys. Lett. 70, 1354 (1997).
4. Mihalcea, C. et al., Appl. Phys. Lett. 68, 3531 (1996).
5. Ohtsu, M. and Hori, H., Near-Field Nano-Optics (Kluwer Academic, New York, NY, 1999).
6. Challener, W. A. et al., Jpn. J. Appl. Phys. 42, 2043 (2002).
7. Lu, P. L. and Charap, S. H., J. Appl. Phys. 75, 5768 (2001).
8. Bertram, H. N. and Williams, M., IEEE Trans. Magn. 36, 4 (2000).
9. Mallary, M., Torabi, A., and Benakli, M., IEEE Trans. Magn. 38, 1719 (2002).
10. Weller, D. and Mosser, A., IEEE Trans. Magn. 35, 4423 (1999).
11. Iwasaki, S. I. and Hokkyo, J., Eds., Perpendicular Magnetic Recording (IOS Press, Amsterdam, Netherlands, 1991).
12. McDaniel, T. and Challener, W., Trans. Mag. Soc. Jpn. 2, 316 (2002).
13. Sun, W. and Balanis, C. A., IEEE Trans. Microwave Theory Tech. 41, 1965 (1993).
14. Balanis, C. A., Advanced Engineering Electromagnetics (John Wiley & Sons, New York, NY, 1989)
15. Utsumi, Y., IEEE Trans. Microwave Theory Tech. 33, 111 (1985).
16. Getsinger, W. J., IEEE Trans. Microwave Theory Tech. 9, 41 (1962).
17. Shi, X., Thornton, R. and Hesselink, L., Proceedings of Optical Data Storage 70, 1354 (2001).
18. Shi, X. and Hesselink, L., Jpn. J. Appl. Phys. 41, 1632 (2001).
19. Schlesinger, T. E. et al., Jpn. J. Appl. Phys. 41, 1821 (2002).
20. Jin, E. X. and Xu, X., Jpn. J. Appl. Phys. 43, 407 (2004).
21. Itagi, A. V. et al., Appl. Phys. Lett. 83, 4474 (2003).
22. Sendur, K., Challener, W., and Peng, C., J. Appl. Phys. 96, 2743 (2004).
23. Richards, B. and Wolf, E., Proc. Roy. Soc. London Ser. A 253, 349 (1959).
24. Wolf, E., Proc. Roy. Soc. London Ser. A 253, 358 (1959).
25. Otto, A., Z. Phys. 216, 398 (1968).
26. Palik, E. D., Handbook of optical constants of solids (Academic Press, San Diego, CA, 1998)

Condenser-Transducer Configuration for Improving Radiation Efficiency of Near-Field Optical Transducers

  • Kursat Sendur (a1), Chubing Peng (a1) and William Challener (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed