Skip to main content Accessibility help
×
Home

Concentration and Stress Evolution During Electromigration in Passivated Al(0.25 at. % Cu) Conductor Lines

  • H.-K. Kao (a1), G. S. Cargill (a1) and C.-K. Hu (a2)

Abstract

We have used x-ray microbeam fluorescence and diffraction for in-situ measurements of electromigration-induced Cu diffusion and stress evolution in passivated, polycrystalline 10[.proportional]m-wide, 200[.proportional]m-long Al(0.25 at.% Cu) conductor lines. Cu migration is in the direction of the electron flow and is determined by the direction and magnitude of the current and by the temperature during electromigration. The effective charge and diffusivity of Cu in Al(Cu) have been obtained from analysis of the Cu concentration profiles. The evolution of electromigration-induced strains normal to the sample surface has been monitored by x-ray microbeam diffraction. A linear strain profile developed after about 9 hrs of electromigration with 1.5[.dotmath]105 A/cm2 at 300°C, corresponding to 3MPa/[.proportional]m equi-biaxial stress. From the Cu profile measured at the same time, the critical Cu concentration for significantly slowing down Al grain boundary diffusion is estimated to be ∼0.15 at. %. These data also confirm that downstream Cu transport is accompanied by a counter flow of Al in the upstream direction.

Copyright

References

Hide All
[1] Ames, I., d'Heurle, F., and Horstmann, R., IBM J. Res. Dev. 14, 461 (1970).10.1147/rd.144.0461
[2] d'Heurle, F. M., Proc. IEEE 59, 1409 (1971).10.1109/PROC.1971.8447
[3] d'Heurle, F. M., Ainslie, N. G., Gangulee, A., and Shine, M. C., J. Vac. Sci. Technol. 9, 289 (1972).10.1116/1.1316583
[4] Rosenberg, R., J. Vac. Sci. Technol. 9, 263 (1972).10.1116/1.1316576
[5] Ho, P. S. and Howard, J. K., Appl. Phys. Lett. 27, 261 (1975).10.1063/1.88458
[6] Blech, I. A., J. Appl. Phys. 48, 472 (1977).
[7] Hu, C.-K., Ho, P. S., and Small, M. B., J. Appl. Phys. 72, 291 (1992).10.1063/1.352335
[8] Hu, C.-K., Small, M. B., and Ho, P. S., J. Appl. Phys. 74, 969 (1993).10.1063/1.354839
[9] Korhonen, M. A., Liu, T., Brown, D. D., and Li, C.Y., Mat. Res. Soc. Symp. Proc. 391, 411 (1995).10.1557/PROC-391-411
[10] Lloyd, J. R. and Clement, J. J., Appl. Phys. Lett. 69, 2486 (1996).10.1063/1.117506
[11] Lloyd, J. R., Semicond. Sci. Technol. 12, 1177 (1997).10.1088/0268-1242/12/10/002
[12] Wang, P.-C., Cargill, G. S. III, Noyan, I. C., Liniger, E. G., Hu, C.-K., and Lee, K. Y., Mat. Res. Soc. Symp. Proc. Symp. Proc. 427, 35 (1996).10.1557/PROC-427-35
[13] Wang, P.-C., Cargill, G. S. III, Noyan, I. C., Liniger, E. G., Hu, C.-K., and Lee, K. Y., Mat. Res. Soc. Symp. Proc. Symp. Proc. 473, 273 (1997).10.1557/PROC-473-273
[14] Wang, P.-C., Cargill, G. S. III, Noyan, I. C., and Hu, C.-K., Appl. Phys. Lett. 72, 1296 (1998).10.1063/1.120604
[15] Kao, H.-K., Cargill, G. S. III, Hwang, K. J., Ho, A. C., Wang, P.-C., and Hu, C.-K., Mat. Res. Soc. Symp. Proc. 563, 163 (1999).10.1557/PROC-563-163
[16] Note that the Cu concentration values given in ref. 15 are too large by a factor of two, and that the current and current density should be 15mA and 3[.dotmath]105A/cm2 instead of the larger values 25mA and 5[.dotmath]105A/cm2 given in ref. 15.
[17] Kao, H.-K., Cargill, G. S. III and Hu, C.-K., to be published.
[18] Pearson, W. B., A Handbook of Lattice Spacings and Structures of Metals and Alloys, Pergamon, New York, 1958, p. 353.
[19] CRC Handbook of Materials Science, Lynch, C. T., Ed., CRC Press, Cleveland, 1974, p. 341.
[20] Shaw, T. M., Hu, C.-K., Lee, K. Y., and Rosenberg, R., Appl. Phys. Lett. 67, 2296 (1995).10.1063/1.115131
[21] Shaw, T. M., Hu, C.-K., Lee, K. Y., and Rosenberg, R., Mat. Res. Soc. Symp. Proc. 428, 187 (1996).10.1557/PROC-428-187

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed