Skip to main content Accessibility help
×
Home

Computer Simulation of the Effect of Copper on Defect Production and Damage Evolution in Ferritic Steels

  • J. M. Perlado (a1), J. Marian (a1), D. Lodi (a1) and T. Díaz De La Rubia (a2)

Abstract

It has long been noticed that the effect of Cu solute atoms is important for the microstructural evolution of ferritic pressure vessel steels under neutron irradiation conditions. Despite the low concentration of Cu in steel, Cu precipitates form inside the α-Fe surrounding matrix and by impeding free dislocation motion considerably contribute to the hardening of the material. It has been suggested that Cu-rich clusters and combined Cu solute atoms-defect clusters that may act as initiating structures of further precipitates nucleate during annealing of displacement cascades. In order to assess the importance of the different mechanisms taking place during collision events in the formation and later evolution of these structures, a detailed Molecular Dynamics (MD) analysis of displacement cascades in a Fe-1.3% at. Cu binary alloy has been carried out. Cascade energies ranging from 1 to 20 keV have been simulated at temperatures of 100 and 600 K using the MDCASK code, in which the Ackland-Finnis-Sinclair many-body interatomic potential has been implemented. The behaviour of metastable Cu selfinterstitial atoms (SIAs) in the form of mixed Fe-Cu features is studied as well as their impact on the resulting defect structures. It is observed that above 300 K generated Cu SIAs undergo recombination with no substantial effect on the after-cascade microstructure while at 100 K Cu SIAs remain sessile and exhibit a considerable binding to interstitial and vacancy clusters. Finally, the effect that the production of vacancies via collision cascades may have on the self diffusion of Cu solute atoms is quantitatively addressed by means of determining diffusion coefficients for Cu atoms under different microstructural conditions.

Copyright

References

Hide All
[1] Lucas, G. E., Odette, G. R., Maiti, R. and Sheckherd, J. W. in Influence of Radiation on Materials Properties.: 13th International Symposiumn, Part II, edited by Garner, F. A., Genager, C. H. and Igata, N. (ASTM-STP 956, ASTM, Philadelphia, PA, 1987) p. 379
[2] Fisher, S. B. and Buswell, J. T., Int. J. Pressure Vessel Piping 27, 91 (1987)
[3] Odette, G. R. in Microstructure of Irradiated Materials, edited by Robertson, I. M., Rehn, L. E., Zinkle, S. J. and Phytian, W. J. (Mater. Res. Soc. Proc. 373, Pittsburgh, PA, 1995) p. 137
[4] Buswell, J. T., Bischler, P. J., Fenton, S. T., Ward, A. C. and Phytian, W. J., J. Nucl. Mater. 205, 198 (1993)
[5] Rice, P. M. and Stoller, R. E., J. Nucl. Mater. 244, 219 (1997)
[6] Worrall, G. M., Buswell, J. T., English, C. A., Hetherington, M. G. and Smith, G. D., J. Nucl. Mater. 148, 107 (1987)
[7] Nicol, A. C., Jenkins, M. L. and Kirk, M. A. in: Microstructural Processes in Irradiated Materials, edited by Zinkle, S. J., Lucas, G. E., Ewing, R. C. and Williams, J. S. (Mater. Res. Soc. Proc. 540, Warrendale, PA, 1998) p. 409
[8] Soisson, F., Barbu, A. and Martin, G., Acta Mater. 44, 3789 (1996)
[9] Liu, C. L., Odette, G. R., Wirth, B. D. and Lucas, G. E., Mat. Sci. Eng. A 238, 202 (1997)
[10] Wirth, B. D. and Odette, G. R. in: Microstructural Processes in Irradiated Materials, edited by Zinkle, S. J., Lucas, G. E., Ewing, R. C. and Williams, J. S. (Mater. Res. Soc. Proc. 540, Warrendale, PA, 1998) p. 637
[11] Domain, C., Becquart, C. S., Van, J. C. Duysen in Microstructural Processes in Irradiated Materials, edited by Zinkle, S. J., Lucas, G. E., Ewing, R. C. and Williams, J. S. (Mater. Res. Soc. Proc. 540, Warrendale, PA, 1998) p. 643
[12] Odette, G. R. and Wirth, B. D., J. Nucl. Mater. 251, 157 (1997)
[13] , T. N., Barbu, A., Liu, D. and Maury, F., Scripta Metall. 26, 771 (1992)
[14] Rubia, T. Díaz de la and Guinan, M. W., Mater. Res. Forum 97–99, 23 (1992)
[15] Calder, A. F. and Bacon, D. J., J. Nucl. Mater. 207, 25 (1993)
[16] Bacon, D. J. and Rubia, T. Diaz de la, J. Nucl. Mater. 216, 275 (1994)
[17] Deng, H. F. and Bacon, D. J., Phys. Rev. B 53, 11376 (1996)
[18] Ackland, G. J., Bacon, D. J., Calder, A. F. and Harry, T., Philos. Mag. A 75, 713 (1997)
[19] Finnis, M. W. and Sinclair, J. E., Phil. Mag. A 50, 45 (1984)
[20] Rubia, T. Diaz de la and Guinan, M. W., Mater. Res. Forum 174, 151 (1990)
[21] Wriedt, H. A. and Darken, L. S., Trans. Metals. Soc. AIME 218, 30 (1960)
[22] Gao, F. and Bacon, D. J., Phil. Mag. A, 71, 65 (1995)
[23] Johnson, R. A. and Oh, D. J., J. Mater. Res. 4, 1195 (1989)
[24] Stoller, R. E. in: Microstructural Processes in Irradiated Materials, edited by Zinkle, S. J., Lucas, G. E., Ewing, R. C. and Williams, J. S. (Mater. Res. Soc. Proc. 540, Warrendale, PA, 1998) p. 679

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed