Hostname: page-component-7c8c6479df-24hb2 Total loading time: 0 Render date: 2024-03-28T20:40:33.776Z Has data issue: false hasContentIssue false

Computer Simulation of Grain Boundary Character in a Superplastic Aluminum Alloy

Published online by Cambridge University Press:  10 February 2011

T.R. McNelley
Affiliation:
Department of Mechanical Engineering, Naval Postgraduate School, 700 Dyer Road, Monterey, CA 93943-5146; tmcnelley@nps.navy.mil
M.T. Peréz-Prado
Affiliation:
Materials Science Group, Department of Mechanical and Aerospace Engineering, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0411; tpprado@ames.ucsd.edu
Get access

Abstract

High-angle grain boundaries are generally deemed necessary for superplasticity in metals. In polycrystalline materials the grain boundary character must be described in terms of a probability distribution rather than by a single parameter, and little has been reported on the relationship between this distribution and fine-grain superplasticity. For aluminum alloys that exhibit continuous recrystallization the results of computer-aided electron backscatter diffraction analysis have shown that bimodal grain boundary disorientation distributions are present in as-processed material and persist during subsequent annealing. Such distributions may be simulated by computer methods based on a model of the microstructure which assumes that deformation banding occurs during deformation processing. High-angle boundaries (≥30°) develop in association with deformation banding while boundaries of lower disorientation (<30°) develop by dislocation reaction within the bands. Improved understanding of the grain boundary types associated with various microstructural transformation mechanisms will aid the design of processes to produce superplastic microstructures.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Grimes, R.: Advances and Future Directions in Superplastic Materials, NATO-AGARD Lecture Series, 1988, No.168, pp. 8.18.16.Google Scholar
2. Sherby, O.D. and Ruano, O.A.: in Superplastic Forming of of Structural Alloys, Paton, N.E. and Hamilton, C.H., eds., TMS-AIME, New York, 1982, pp. 241254.Google Scholar
3. Langdon, T. G.: Metall. Trans. A, 1982, vol. 13A, pp. 689701.10.1007/BF02642383Google Scholar
4. Sherby, O.D. and Wadsworth, J.: in Deformation Processing and Microstructure, Krauss, G., ed., ASM, Materials Park, OH, 1984, p. 355 Google Scholar
5. Ruano, O.A. and Sherby, O.D.: Revue Phys. Appl., 1988, vol. 23, pp. 625637..10.1051/rphysap:01988002304062500Google Scholar
6. Gifkins, R.C.: Metall. Trans. A, 1976, vol. 7A, p. 1225–32.10.1007/BF02656607Google Scholar
7. Poirier, J.P.: in Creep of Crystals, Cambridge University Press, 1985, pp. 79 10.1017/CBO9780511564451Google Scholar
8. Ball, A. and Hutchison, M.M.: Met. Sci. J., 1969, vol. 3, p. 17.10.1179/msc.1969.3.1.1Google Scholar
9. Mackenzie, J.K.: Biometrica, 1958, vol. 45, pp. 229240 10.1093/biomet/45.1-2.229Google Scholar
10. McNelley, T.R. and McMahon, M.E.: Metall. Mater. Trans. A, 1996, vol. 27A, pp. 22522262.10.1007/BF02651879Google Scholar
11. Doherty, R.D., Hughes, D.A., Humphreys, F.J., Jonas, J.J., Juul-Jensen, D., Kassner, M.E., King, W.E., McNelley, T.R., McQueen, H.J., and Rollet, A.D.: Mater. Sci. Eng. A, 1997, vol. A238, pp. 219274.10.1016/S0921-5093(97)00424-3Google Scholar
12. Hughes, D.A. and Hansen, N.: Acta Mater., 1997, vol. 45, pp.38713886.10.1016/S1359-6454(97)00027-XGoogle Scholar
13. Humphreys, F.J., Prangell, P.B. and Priestner, R.: in Proceedings of the Fourth International Conference on Recrystallization and Related Phenomena, Sakai, T. and Suzuki, H. (eds.), Japan Inst. of Metals, Sendai, 1999, pp. 6978 Google Scholar
14. Humphreys, F.J.: Acta Mater., 1997, vol. 45, p. 5031 10.1016/S1359-6454(97)00173-0Google Scholar
15. McNelley, T. R. and McMahon, M. E.: Metall. Mater. Trans. A, 1997, vol. 28A, pp. 1879–87.10.1007/s11661-997-0118-2Google Scholar
16. McNelley, T. R., McMahon, M. E. and Pérez-Prado, M. T.: Phil. Trans. R. Soc. Lond. A, 1999, vol. 357, pp. 16831705.10.1098/rsta.1999.0396Google Scholar
17. Randle, V.: Microtexture Determination and Its Applications, The Institute of Metals, 1992.Google Scholar
18. McNelley, T.R. and McMahon, M.E.: J. of Metals, 1996, vol. 48, no. 2, pp. 5860.Google Scholar
19. Bunge, H.J., Texture Analysis in Materials Science, Butterworths, London, 1982.Google Scholar
20. Adams, B.L.:Metall. Trans. A, 1986, vol. 17A, pp. 21992207.10.1007/BF02645918Google Scholar
21. Haessner, F., Pospiech, J., and Sztwiertnia, J.: Mater. Sci. Engng., 1983, vol. 57, pp. 114.10.1016/0025-5416(83)90020-4Google Scholar
22. Lee, C.S., Duggan, B.J. and Smallman, R.E.: Acta Mater., 1993, vol. 41, pp. 22652270.10.1016/0956-7151(93)90308-FGoogle Scholar
23. Lee, C.S. and Duggan, B.J.: Acta Mater., 1993, vol. 41, pp. 26912699.10.1016/0956-7151(93)90138-IGoogle Scholar
24. Kulkarni, S.S., Starke, E.A. and Kujlmann-Wilsdorf, D.: Acta Mater., 1998, vol. 46, pp. 52835301.10.1016/S1359-6454(98)00225-0Google Scholar
25. Barrett, C.S.: Trans. Am. Inst. Min. Engrs., 1939, vol. 135, p. 296.Google Scholar
26. Barrett, C.S. and Levenson, L.H.: Trans. Am. Inst. Min. Engrs., 1940, vol. 137, p. 112127.Google Scholar
27. Hirsch, J. and Lücke, K.: Acta Metall., 1988, vol. 36, pp. 28832904.10.1016/0001-6160(88)90173-3Google Scholar