Hostname: page-component-76fb5796d-dfsvx Total loading time: 0 Render date: 2024-04-27T02:04:14.673Z Has data issue: false hasContentIssue false

Computer Simulation of Annealing after Cluster Ion Implantation

Published online by Cambridge University Press:  14 June 2011

Z. Insepov
Affiliation:
Ion Beam Engineering Experimental Laboratory, Kyoto University, Sakyo, Kyoto 606, Japaninsepov@kuee.kyoto-u.ac.jp
T. Aoki
Affiliation:
Ion Beam Engineering Experimental Laboratory, Kyoto University, Sakyo, Kyoto 606, Japaninsepov@kuee.kyoto-u.ac.jp
J. Matsuo
Affiliation:
Ion Beam Engineering Experimental Laboratory, Kyoto University, Sakyo, Kyoto 606, Japaninsepov@kuee.kyoto-u.ac.jp
I. Yamada
Affiliation:
Ion Beam Engineering Experimental Laboratory, Kyoto University, Sakyo, Kyoto 606, Japaninsepov@kuee.kyoto-u.ac.jp
Get access

Abstract

Molecular Dynamics (MD) and Metropolis Monte-Carlo (MMC) models of monomer B and decaborane implantation into Si and following rapid thermal annealing (RTA) processes have been developed in this paper. The implanted B dopant diffusion coefficients were obtained for different substrate temperatures. The simulation of decaborane ion implantation has revealed the formation of an amorphized area in a subsurface region, much larger than that of a single B+ implantation, with the same energy per ion. The B diffusion coefficient shows an unusual temperature dependence with two different activation energies. Low activation energy, less than 0.2, was obtained for a low-temperature region, and a higher activation energy, ˜ 3 ev, for a higher-temperature region which is typical for the RTA processing. The higher activation energy is comparable with the equilibrium activation energy, 3.4 ev, for B diffusion in Si.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Eaglesham, D.J., Stolk, P.A., Gossmann, H.-J., Haynes, T.E., Poate, J.M., Nucl. Instrum. Methods in Phys.Res. B 106, p. 191 (1995)Google Scholar
2. Chason, E., Picraux, S.T., Poate, J.M., Borland, J.O., Current, M.I., de la Rubia, T. Diaz, Eaglesham, D.J., Holland, O.W., Law, M.E., Magee, C.W., Mayer, J.W., Melngailis, J., Tasch, A.F., Appl.Phys.Reviews 81, p. 6513 (1997).Google Scholar
3. Yamada, I., Matsuo, J., Jones, E.C., Takeuchi, D., Aoki, T., Goto, K., Sugii, T. in Materials Modification and Synthesis by Ion Beam Processing, ed. D.E., Alexander, N.W., Cheung, B., Park, and W., Skopura (Mat.Res.Soc.Symp.Proc. 438, Pittsburgh PA 1997), p. 363374.Google Scholar
4. Nichols, C.S., Van de Walle, C.G., and Pantelides, S.T., Phys.Rev. B 40, p.5484 (1989).Google Scholar
5. Fahey, P.M., Griffin, P.B., and Plummer, J.D., Rev.Mod.Phys. 61, p. 289 (1989).Google Scholar
6. Gimer, G.H., de la Rubia, T.Diaz, Stock, D.M., Jaraiz, M., Nucl.Instr.Methods B 102, p.247 (1995).Google Scholar
7. Jaraiz, M., Gilmer, G.H., Poate, J.M., de la Rubia, T.D., Appl.Phys.Lett. 68, p. 409 (1996).Google Scholar
8. Tian, S., Moris, M., Morris, S.J., Obradovic, B., Tasch, A.F. in Materials Modification and Synthesis by Ion Beam Processing, edited by D.E., Alexander, N.W., Cheung, B., Park, and W., Skorupa (Mat. Res. Soc. Symp. Proc. 438, Pittsburgh PA 1997), p. 8388 Google Scholar
9. Tang, M., Colombo, L., Zhu, J., de la Rubia, T.D., Phys.Rev. B 55, p.14279 (1997).Google Scholar
10. Bedrossian, P.J., Caturla, M.-J., and de la Rubia, T.Diaz in Materials Modification and Synthesis by Ion Beam Processing, edited by D.E., Alexander, N.W., Cheung, B., Park, and W., Skorupa (Mat.Res.Soc.Symp.Proc. 438, Pittsburgh PA 1997), p. 715720.Google Scholar
11. Smith, R., Shaw, M., Webb, R.P., Foad, M.A., J.Appl.Phys. 83, p. 3148 (1998)Google Scholar
12. Berendsen, H.J.C., Van Gunsteren, W.F. in Molecular liquids, dynamics and interaction, edited by A.J., Bames, W.J., Orville-Thomas, and J., Yarwood (NATO ASI series C135, Reidel, NY 1984) p.475500.Google Scholar
13. Heerman, D.W., Computer simulation methods in theoretical physics, 2nd ed. (Springer, NewYork, 1990) pp. 51.Google Scholar
14. Kang, H.C. Weinberg, W.H., J.Chem.Phys. 90, p.2824 (1989).Google Scholar
15. Cao, P.-L., Phys.Rev.Lett. 73, p.2595 (1994).Google Scholar