Hostname: page-component-76fb5796d-vvkck Total loading time: 0 Render date: 2024-04-25T13:02:35.542Z Has data issue: false hasContentIssue false

Compositional control and structural properties of ZnSe1-xTex epitaxial films on lattice- matched InGaAs/InP (001) by photoassisted Metal Organic Vapor Phase Expitaxy (MOVPE)

Published online by Cambridge University Press:  15 March 2011

Bhanu Prakash Yarlagadda
Affiliation:
Electrical and Computer Engineering Department, 371 Fairfield Road, Unit-2157, University of Connecticut, Storrs, CT - 06269-2157.
Angel Rodriguez
Affiliation:
Electrical and Computer Engineering Department, 371 Fairfield Road, Unit-2157, University of Connecticut, Storrs, CT - 06269-2157.
Peng Li
Affiliation:
Electrical and Computer Engineering Department, 371 Fairfield Road, Unit-2157, University of Connecticut, Storrs, CT - 06269-2157.
John Ayers
Affiliation:
Electrical and Computer Engineering Department, 371 Fairfield Road, Unit-2157, University of Connecticut, Storrs, CT - 06269-2157.
Faquir Jain
Affiliation:
Electrical and Computer Engineering Department, 371 Fairfield Road, Unit-2157, University of Connecticut, Storrs, CT - 06269-2157.
Get access

Abstract

We report the growth of ZnSe1−xTex (x < 0.9) epitaxial layers using photoassisted Metal- Organic Vapor Phase Epitaxy (MOVPE) on lattice-matched InGaAs/InP (001) substrates. Ternary compositional control was studied as a function of the gas phase composition, growth temperature (360°C – 400°C) and irradiation (12 mW/cm2 – 48mW/cm2). Compositional and structural data were obtained by x-ray rocking curves from 004 and 044 reflections. Lower growth temperatures increased the relative tellurium incorporation but at the expense of the growth rate.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Nakayama, N., Itoh, S., Ohata, T., Nakano, K., Okuyama, H., Ozawa, M., Ikeda, M. and Mori, Y., Electron. Lett., 29, 1488 (1993).Google Scholar
2. Gaines, J. M., Drenton, R. R., Haberen, K. W., Marshall, T., Mensz, P. and Petruzello, J., Appl. Phys. Lett., 62, 2462 (1993).Google Scholar
3. Chadi, D. J., Appl. Phys. Lett. 59, 3589 (1993).Google Scholar
4. Kamata, A., Mituhashi, H. and Fujita, H., Jpn. J. Appl. Phys. 35, L87 (1996).Google Scholar
5. Lin, W., Yang, B. X., Guo, S. P., Elmoumni, A., Fernandez, F., Tamargo, M. C., Appl. Phys. Lett. 75(17), 2608 (1999).Google Scholar
6. Healey, P. D., Bao, K., Gokhale, M., Ayers, J. E. and Jain, F. C., Acta Crystallogra., Sect. A: Found. Crystallogr. 51, 489 (1995).Google Scholar
7. Healey, P. D. and Ayers, J. E., Acta Crystallogra., Sect. A: Found. Crystallogr. 52, 245 (1996).Google Scholar
8. Nam, Sungun et al. , Mat. Chem. And Phys., 69, 3035, 2001.Google Scholar
9. Zhang, X. G., parent, D. W., Li, P., Rodriguez, A., Zhao, G., Ayers, J. E. and Jain, F. C., J. Vac. Sci. Technol. B, 18(3), 1375, 2000.Google Scholar
10. Ayers, J. E., J. Crystal growth, 135, 7177, 1994.Google Scholar