Hostname: page-component-848d4c4894-xm8r8 Total loading time: 0 Render date: 2024-06-22T13:12:34.027Z Has data issue: false hasContentIssue false

Composition Dependence of the Band Gap Energy of InxGal-xN Layers on GaN (x≤0.15) Grown by Metal-Organic Chemical Vapor Deposition

Published online by Cambridge University Press:  10 February 2011

J. Wagner
Affiliation:
Fraunhofer-Institut für Angewandte Festkörperphysik, Tullastrasse 72, D-79108 Freiburg, Germany, wagner@iaf.fhg.de
A. Ramakrishnan
Affiliation:
Fraunhofer-Institut für Angewandte Festkörperphysik, Tullastrasse 72, D-79108 Freiburg, Germany, wagner@iaf.fhg.de
D. Behr
Affiliation:
Fraunhofer-Institut für Angewandte Festkörperphysik, Tullastrasse 72, D-79108 Freiburg, Germany, wagner@iaf.fhg.de
M. Maier
Affiliation:
Fraunhofer-Institut für Angewandte Festkörperphysik, Tullastrasse 72, D-79108 Freiburg, Germany, wagner@iaf.fhg.de
N. Herres
Affiliation:
Fraunhofer-Institut für Angewandte Festkörperphysik, Tullastrasse 72, D-79108 Freiburg, Germany, wagner@iaf.fhg.de
M. Kunzer
Affiliation:
Fraunhofer-Institut für Angewandte Festkörperphysik, Tullastrasse 72, D-79108 Freiburg, Germany, wagner@iaf.fhg.de
H. Obloh
Affiliation:
Fraunhofer-Institut für Angewandte Festkörperphysik, Tullastrasse 72, D-79108 Freiburg, Germany, wagner@iaf.fhg.de
K.-H. Bachem
Affiliation:
Fraunhofer-Institut für Angewandte Festkörperphysik, Tullastrasse 72, D-79108 Freiburg, Germany, wagner@iaf.fhg.de
Get access

Abstract

We report on the composition dependence of the band gap energy of strained hexagonal InGal-,N layers on GaN with x≤0.15, grown by metal-organic chemical vapor deposition on sapphire substrates. The composition of the (InGa)N was determined by secondary ion mass spectroscopy. High-resolution X-ray diffraction measurements confirmed that the (InGa)N layers with typical thicknesses of 30 nm are pseudomorphically strained to the in-plane lattice parameter of the underlying GaN. Room-temperature photoreflection spectroscopy and spectroscopic ellipsometry were used to determine the (InGa)N band gap energy. The composition dependence of the band gap energy of the strained (InGa)N layers was found to be given by EG(x)=3.43-3.28.x (eV) for x≤0.15. When correcting for the strain induced shift of the fundamental energy gap, a bowing parameter of 3.2 eV was obtained for the composition dependence of the gap energy of unstrained (InGa)N.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Nakamura, S. and Fasol, G., The Blue Laser Diode (Springer, Berlin, 1997).Google Scholar
2. Shan, W., Little, B. D., Song, J. J., Feng, Z. C., Schurmann, M., and Stall, R. A., Appl. Phys. Lett. 69, 3315 (1996).Google Scholar
3. McClusky, M. D., Walle, C. G. Van de, Master, C. P., Romano, L. T., and Johnson, N. M., Appl. Phys. Lett. 72, 2725 (1998).Google Scholar
4. Wagner, J., Ramakrishnan, A., Behr, D., Obloh, H., Kunzer, M., and Bachem, K.-H., Appl. Phys. Lett. 73, 1715 (1998).Google Scholar
5. Chichibu, S., Azuhata, T., Sota, T., and Nakamura, S., Appl. Phys. Lett. 70, 2822 (1997).Google Scholar
6. Amano, H., Takeuchi, T., Sota, S., Sakai, H., and Akasaki, I., Mat. Res. Soc. Symp. Proc. Vol. 449, 1143 (1997).Google Scholar
7. Scholz, F., Off, J., Kniest, A., Görgens, L., and Ambacher, O., in Proceedings of E-MRS Spring Meeting 1998, Symposium L Nitrides and Related Wide Band Gap Materials (to appear in Mat. Sci. Eng. B).Google Scholar
8. Obloh, H., Behr, D., Herres, N., Hoffmann, C., Kunzer, M., Maier, M., Müller, S., Pletschen, W., Santic, B., Schlotter, P., Seelmann, M. E., Bachem, K.-H., Kaufmann, U., Proc. 2nd Int. Conf. Nitride Semicond. (Tokushima, Japan, 1997), p. 258.Google Scholar
9. Balkas, C. M., Baskeri, C., and Davis, R. F., Powder Diffraction 10, 266 (1995).Google Scholar
10. Kubota, K., Kobayashi, Y., and Fujimoto, K., J. Appl. Phys. 66, 2984 (1989).Google Scholar
11. Wright, A. F., J. Appl. Phys. 82, 2833 (1997).Google Scholar
12. Aspnes, D. E., Surf. Sci. 37, 418 (1973).Google Scholar
13. Herzinger, C. M., Snyder, P. G., Johs, B., and Woollam, J. A., J. Appl. Phys. 77, 1715 (1995).Google Scholar
14. Takeuchi, T., Sota, S., Katsurgawa, M., Komori, M., Takeuchi, H., Amano, H., and Akasaki, I., Jpn. J. Appl. Phys. 36, L382 (1997); J. S. Im, H. Kollmer, J. Off, A. Sohmer, F. Scholz, and A. Hangleiter, Mat. Res. Soc. Symp. Proc. Vol. 482, 513 (1998).Google Scholar
15. Tansley, T. L. and Foley, C. P., J. Appl. Phys. 59, 3241 (1986).Google Scholar
16. Wetzel, C., Takeuchi, T., Yamaguchi, S., Katoh, H., Amano, H., and Akasaki, I., Appl. Phys. Lett. 73, 1994 (1998).Google Scholar
17. Kawashima, T., Yoshikawa, H., Adachi, S., Fuke, S., and Ohtsuka, K., J. Appl. Phys. 82, 3528 (1997).Google Scholar
18. Fischer, A.J., Shan, W., Song, J.J., Chang, Y.C., Homing, R., and Goldenberg, B., Appl. Phys. Lett. 71, 1981 (1997).Google Scholar
19. Yamaguchi, A.A., Mochizuki, Y., Sunakawa, H., and Usui, A., J. Appl. Phys. 83, 4542 (1998).Google Scholar