Skip to main content Accessibility help
×
Home

Composition dependence of room temperature 1.54μm Er3+ luminescence from erbium doped silicon:oxygen thin films deposited by electron cyclotron resonance plasma enhanced chemical vapor deposition

  • Jung H. Shin (a1), Mun-Jun Kim (a1), Se-Young Seo (a1) and Choochon Lee (a1)

Abstract

The composition dependence of room temperature 1.54 μ Er3+ photoluminescence of erbium doped silicon:oxygen thin films deposited by electron cyclotron resonance plasma enhanced chemical vapor deposition of SiH4 and O2 with concurrent sputtering of erbium is investigated. The Si:O ratio was varied from 3:1 to 1:2 and the annealing temperature was varied from 500 to 900 °C. The most intense Er3+ luminescence is observed from the sample with Si:O ratio of 1:1.2 after 900 °C anneal and formation of silicon nanoclusters embedded in SiO2 matrix. High active erbium fraction, efficient excitation via carriers, and high luminescence efficiency due to high quality SiO2 matrix are identified as key factors in producing the intense Er3+ luminescence.

Copyright

References

Hide All
1 Ennen, H., Schneider, J., Pomrenke, G., and Axmann, A., Appl. Phys. Lett., 43, 943 (1983).
2 See, for example, Rare Earth Doped Semiconductors II, edited by Coffa, S., Polman, A., Schwartz, R., Mat. Res. Soc. Symp. Proc. 422, (1996).
3 Franzó, G., Priolo, F., Coffa, S., Polman, A., and Camera, A., Appl. Phys. Lett. 64 2235 (1993).
4 Stimmer, J., Reittinger, A., Ntitzel, J. F., Abstreiter, G., Holzbrecher, H., and Buchal, Ch., Appl. Phys. Lett. 68 3290, (1996).
5 Serna, R., Shin, J., Lohmeier, M., Vlieg, E., and Polman, A., J. Appl. Phys. 79 2658 (1996).
6 Andry, P. S., Varhue, W., Ladipo, F., Ahmed, K., Adams, E., Lavoie, M., Klein, P. B., Hengehold, R. and Hunter, J., J. Appl. Phys. 80 551 (1996).
7 Qian, X. Y., Kiang, M. H., Huang, J., carl, D., Cheung, Nw. W., Lieberman, M. A., Brown, I. G., Yu, K. M., and Current, M. I., Nucl. Inst. Meth. B 55 888 (1991).
8 van den Hoven, G. N., Shin, J. H., Polman, A., Lombardo, S., and Campisano, S. U., J. Appl. Phys. 78 2642 (1995).
9 Shin, J. H., Sema, R., van den Hoven, G. N., Polman, A., van Sark, W. G. J. H. M., and Vrednberg, A. M., Appl. Phys. Lett. 68 46 (1996).
10 Wu, X., White, R., Hömmerich, U., Namavar, F., Cremins-Costa, A.M., Luminescence, J., 711 997(13)
11 Polman, A., van den Hoven, G. N., Custer, J. S., Shin, J. H., Sema, R., and Alkemade, P. F. A., J. Appl. Phys. 77 1256 (1995)
12 Snoeks, Edwin, Ph.D. thesis, FOM-AMOLF.
13 Hayashi, S. and Yamamoto, K., J. of Luminescence, 70 352 (1996).
14 Tsybeskov, L., Duttagupta, S. P., Hirschman, K. D., Fauchet, P. M., Moore, K. L. and Hall, D. G., Appl. Phys. Lett. 70 1790 (1997).
15 Favennec, P. N., L'Haridon, H., Moutonnet, D., Salvi, M., Ganneau, M., Mat. Res. Soc. Symp. Proc. 301 181 (1993).

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed