Hostname: page-component-7bb8b95d7b-2h6rp Total loading time: 0 Render date: 2024-09-23T14:49:07.815Z Has data issue: false hasContentIssue false

Composition dependence of room temperature 1.54μm Er3+ luminescence from erbium doped silicon:oxygen thin films deposited by electron cyclotron resonance plasma enhanced chemical vapor deposition

Published online by Cambridge University Press:  10 February 2011

Jung H. Shin
Affiliation:
Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), 373-1˜Kusung-dong, Yusung-gu, Taejon, Korea
Mun-Jun Kim
Affiliation:
Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), 373-1˜Kusung-dong, Yusung-gu, Taejon, Korea
Se-Young Seo
Affiliation:
Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), 373-1˜Kusung-dong, Yusung-gu, Taejon, Korea
Choochon Lee
Affiliation:
Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), 373-1˜Kusung-dong, Yusung-gu, Taejon, Korea
Get access

Abstract

The composition dependence of room temperature 1.54 μ Er3+ photoluminescence of erbium doped silicon:oxygen thin films deposited by electron cyclotron resonance plasma enhanced chemical vapor deposition of SiH4 and O2 with concurrent sputtering of erbium is investigated. The Si:O ratio was varied from 3:1 to 1:2 and the annealing temperature was varied from 500 to 900 °C. The most intense Er3+ luminescence is observed from the sample with Si:O ratio of 1:1.2 after 900 °C anneal and formation of silicon nanoclusters embedded in SiO2 matrix. High active erbium fraction, efficient excitation via carriers, and high luminescence efficiency due to high quality SiO2 matrix are identified as key factors in producing the intense Er3+ luminescence.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Ennen, H., Schneider, J., Pomrenke, G., and Axmann, A., Appl. Phys. Lett., 43, 943 (1983).Google Scholar
2 See, for example, Rare Earth Doped Semiconductors II, edited by Coffa, S., Polman, A., Schwartz, R., Mat. Res. Soc. Symp. Proc. 422, (1996).Google Scholar
3 Franzó, G., Priolo, F., Coffa, S., Polman, A., and Camera, A., Appl. Phys. Lett. 64 2235 (1993).Google Scholar
4 Stimmer, J., Reittinger, A., Ntitzel, J. F., Abstreiter, G., Holzbrecher, H., and Buchal, Ch., Appl. Phys. Lett. 68 3290, (1996).Google Scholar
5 Serna, R., Shin, J., Lohmeier, M., Vlieg, E., and Polman, A., J. Appl. Phys. 79 2658 (1996).Google Scholar
6 Andry, P. S., Varhue, W., Ladipo, F., Ahmed, K., Adams, E., Lavoie, M., Klein, P. B., Hengehold, R. and Hunter, J., J. Appl. Phys. 80 551 (1996).Google Scholar
7 Qian, X. Y., Kiang, M. H., Huang, J., carl, D., Cheung, Nw. W., Lieberman, M. A., Brown, I. G., Yu, K. M., and Current, M. I., Nucl. Inst. Meth. B 55 888 (1991).Google Scholar
8 van den Hoven, G. N., Shin, J. H., Polman, A., Lombardo, S., and Campisano, S. U., J. Appl. Phys. 78 2642 (1995).Google Scholar
9 Shin, J. H., Sema, R., van den Hoven, G. N., Polman, A., van Sark, W. G. J. H. M., and Vrednberg, A. M., Appl. Phys. Lett. 68 46 (1996).Google Scholar
10 Wu, X., White, R., Hömmerich, U., Namavar, F., Cremins-Costa, A.M., Luminescence, J., 711 997(13)Google Scholar
11 Polman, A., van den Hoven, G. N., Custer, J. S., Shin, J. H., Sema, R., and Alkemade, P. F. A., J. Appl. Phys. 77 1256 (1995)Google Scholar
12 Snoeks, Edwin, Ph.D. thesis, FOM-AMOLF.Google Scholar
13 Hayashi, S. and Yamamoto, K., J. of Luminescence, 70 352 (1996).Google Scholar
14 Tsybeskov, L., Duttagupta, S. P., Hirschman, K. D., Fauchet, P. M., Moore, K. L. and Hall, D. G., Appl. Phys. Lett. 70 1790 (1997).Google Scholar
15 Favennec, P. N., L'Haridon, H., Moutonnet, D., Salvi, M., Ganneau, M., Mat. Res. Soc. Symp. Proc. 301 181 (1993).Google Scholar