Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-19T21:03:38.598Z Has data issue: false hasContentIssue false

Composition Dependence of Dielectric Anomaly in Strontium Bismuth Tantalate Thin Films

Published online by Cambridge University Press:  10 February 2011

Koichi Takemura
Affiliation:
Functional Materials Research Laboratories, NEC Corporation, 4-1-1 Miyazaki, Miyamae-ku, Kawasaki 216-8555, Japan E-mail: takemura@fml.cl.nec.co.jp
Takehiro Noguchi
Affiliation:
Functional Materials Research Laboratories, NEC Corporation, 4-1-1 Miyazaki, Miyamae-ku, Kawasaki 216-8555, Japan
Takashi Hase
Affiliation:
Functional Materials Research Laboratories, NEC Corporation, 4-1-1 Miyazaki, Miyamae-ku, Kawasaki 216-8555, Japan
Hidekazu Kimura
Affiliation:
Fundamental Research Laboratories, NEC Corporation, 34 Miyukigaoka, Tsukuba 305-8501, Japan
Yoichi Miyasaka
Affiliation:
Functional Materials Research Laboratories, NEC Corporation, 4-1-1 Miyazaki, Miyamae-ku, Kawasaki 216-8555, Japan
Get access

Abstract

Effects of off-stoichiometry and Nb substitution on the dielectric anomaly and ferroelectric properties have been investigated for SrBi2Ta2O9(SBT) thin films. Local atomic environment for the stoichiometric and off-stoichiometric SBT films has been also measured. The features of the dielectric anomaly, the Curie temperature (Tc), and the temperature dependence of the spontaneous polarization (Ps) are independent of the film thickness, and are governed by the nature of the crystal. For the stoichiometric Sr content SBT films, the grain size increases and the temperature dependence of the remanent polarization (Pr) decreases with increasing thickness. For the films with Sr/Bi/Ta = 0.8/2/2 and 0.8/2.2/2, Sr deficient local structure was observed, and such lattice structure probably leads to higher Tc than the stoichiometric crystal. Nb substitution for Ta also raises Tc, and makes the dielectric anomaly sharper. The phase transition associated with the dielectric anomaly for these films is thought to be first-order.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Araujo, C. A. Paz de, Cuchiaro, J. D., McMillan, L. D., Scott, M. C., and Scott, J. F., Nature 374, 627 (1995).Google Scholar
2. Amanuma, K., Hase, T., and Miyasaka, Y., Appl. Phys. Lett. 66, 221 (1995).Google Scholar
3. Smolemskii, G. A., Isupov, V. A., and Agranovskaya, A. I., Sov. Phys. Solid State 3, 651 (1961).Google Scholar
4. Subbarao, E. C., J. Phys. Chem. Solids 23, 665 (1962).Google Scholar
5. Yang, J. S. and Chen, X. M., Mater. Lett. 29, 73 (1996).Google Scholar
6. Newnham, R. E., Wolfe, R. W., Horsey, R. S., Diaz-Colon, F. A., and Kay, M. I., Mater. Res. Bull. 8, 1183 (1973).Google Scholar
7. Noguchi, T., Hase, T., and Miyasaka, Y., Jpn. J. Appl. Phys. 35, 4900 (1996).Google Scholar
8. Noguchi, T., Hase, T., and Miyasaka, Y., Integr. Ferroelectr. 17, 57 (1997).Google Scholar
9. Takemura, K., Noguchi, T., Hase, T., Miyasaka, Y., Appl. Phys. Lett. 73, 1649 (1998).Google Scholar
10. Kimura, H., Mizuki, J., Kamiyama, S., and Suzuki, H., Appl. Phys. Lett. 66, 2209 (1995).Google Scholar
11. Hartmann, A. J., Gutleben, C. D., Foran, G. J., Whitby, C. P., Lamb, R. N., Isobe, C., Watanabe, K., and Scott, J. F., Ferroelectr. Lett. 23, 75 (1997).Google Scholar
12. Rae, A. D., Thompson, J. G., and Withers, R. L., Acta. Cryst. B48, 418 (1992).Google Scholar