Hostname: page-component-7bb8b95d7b-dtkg6 Total loading time: 0 Render date: 2024-10-06T11:48:55.819Z Has data issue: false hasContentIssue false

Composition- and Temperature-Dependence of Ion Mixing in Amorphous Si/Ge Artificial Multilayers

Published online by Cambridge University Press:  25 February 2011

B. Park
Affiliation:
Division of Applied Sciences, Harvard University, Cambridge MA 02138
F. Spaepen
Affiliation:
Division of Applied Sciences, Harvard University, Cambridge MA 02138
J. M. Poate
Affiliation:
AT&T Bell Laboratories, 600 Mountain Road, Murray Hill, NJ 07974
F. Priolo
Affiliation:
AT&T Bell Laboratories, 600 Mountain Road, Murray Hill, NJ 07974
D. C. Jacobson
Affiliation:
AT&T Bell Laboratories, 600 Mountain Road, Murray Hill, NJ 07974
Get access

Abstract

Amorphous Si/Ge artificial multilayers with a repeat length of around 60A have been partially mixed with 1.5 MeV Ar+ ions at temperatures in the range 77–673K. The change in the intensity of the first X-ray diffraction peak resulting from the composition modulation is used to determine the mixing lengths. The diffusive component of the square of the mixing length, at a given dose, is independent of the dose rate and has an Arrhenius-type temperature dependence, with activation enthalpies between 0.19 and 0.22 eV, depending on the average composition.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Park, B., Spaepen, F., Poate, J.M. and Jacobson, D.C., Mater. Res. Soc. Proc. 74, 493 (1987).Google Scholar
2. Park, B., Spaepen, F., Poate, J.M., Priolo, F., Jacobson, D.C., Pai, C.S., White, A.E. and Short, K.T., Mater. Res. Soc. Proc. 103, 173 (1988).Google Scholar
3. Cook, H.E. and Hilliard, J.E., J. Appl. Phys. 40, 2191 (1969).Google Scholar
4. Greer, A.L. and Spaepen, F., in Synthetic Modulated Structures, edited by Chang, L.L. and Giessen, B.C. (Academic Press, New York, 1985) p.419.Google Scholar
5. Priolo, F., Poate, J.M., Jacobson, D.C., Linnros, J., Bastone, J.L. and Campisano, S.U., Appl. Phys. Lett. 52, 1213 (1988).Google Scholar
6. Priolo, F., Poate, J.M., Jacobson, D.C., Batstone, J.L. and Campisano, S.U., to be published in the Proceedings of the IBMM (1988).Google Scholar
7. Müller, A., Naundorf, V. and Macht, M.-P., J. Appl. Phys. 64, 3445 (1988).Google Scholar
8. Averback, R.S., Hahn, H. and Ding, Fu-Rong, J. Less-Common Metals 140, 267 (1988).Google Scholar
9. Sizmann, R., J. Nucl. Mater. 69/70, 386 (1978).Google Scholar
10. Spaepen, F., Greer, A.L., Kelton, K.F. and Bell, J.L., Rev. Sci. Instr. 56, 1340 (1985).Google Scholar
11. Kadin, A.M. and Keem, J.E., Scripta Matall. 20, 440 (1986).Google Scholar
12. Matteson, S., Paine, B.M., Grimaldi, M.G., Mezey, G. and Nicolet, M.-A., Nucl. Instr. and Meth. 182/183, 43 (1981).Google Scholar
13. Ziegler, J.F., Biersack, J.P. and Littmark, U., The Stopping and Range of Ions in Solids, Pergamon Press, New York (1985).Google Scholar
14. Marwick, A.D., in Surface Modification and Alloying by Laser, Ion, and Electron Beams, edited by Poate, J.M., Foti, G. and Jacobson, D.C. (Plenum, New York, 1983) p.211.Google Scholar
15. Bennett, C.H., Chaudhari, P., Moruzzi, V. and Steinhardt, P., Philos. Mag. A 40, 485 (1979).Google Scholar
16. Rehn, L.E. and Okamoto, P.R., to be published in the Proceedings of the IBMM (1988).Google Scholar