Hostname: page-component-8448b6f56d-tj2md Total loading time: 0 Render date: 2024-04-23T09:37:33.913Z Has data issue: false hasContentIssue false

Complexation of Zr(IV) Precursors in Aqueous Solutions

Published online by Cambridge University Press:  25 February 2011

J. Livage
Affiliation:
Chimie de la Matière Condensée, Université Paris VI, 4 place Jussieu, 75252 Paris, France
M. Chatry
Affiliation:
Chimie de la Matière Condensée, Université Paris VI, 4 place Jussieu, 75252 Paris, France
M. Henry
Affiliation:
Chimie de la Matière Condensée, Université Paris VI, 4 place Jussieu, 75252 Paris, France
F. Taulelle
Affiliation:
Chimie de la Matière Condensée, Université Paris VI, 4 place Jussieu, 75252 Paris, France
Get access

Abstract

The sol-gel synthesis of metal oxides can be performed via the hydroxylation and condensation of metal cations in aqueous solutions. The complexation of these ionic species by anions leads to the chemical modification of inorganic precursors at a molecular level. The whole process of hydrolysis and condensation can then be modified allowing a chemical control of the morphology, the structure and even the chemical composition of the resulting powder.

The role of anions during the formation of condensed phases from inorganic precursors in aqueous solutions has to be taken into account. The complexing ability of these anions is described in the frame of the Partial Charge Model as a function of pH and the mean electronegativity of anionie and cationic chemical species. Experimental evidence for the complexation of zirconyl species in aqueous solutions will be given using multinuclear NMR of anions.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Livage, J., Henry, M., Sanchez, C., Progress in Solid State Chemistry, 18, 259 (1988).CrossRefGoogle Scholar
2. Henry, M., Jolivet, J. P., Livage, J., Structure and Bonding, 77, 153 (1992).CrossRefGoogle Scholar
3. Baes, C. F., Mesmer, R. E., in Hydrolysis of Cations J. Wiley PuB. New York (1976)Google Scholar
4. Sanderson, R. T., Science, 114, 670 (1951).CrossRefGoogle Scholar
5. Muha, G. M., Vaughan, P. A., J. Chem. Phys., 33, 194 (1960).CrossRefGoogle Scholar
6. Aberg, M., Acta Chem. Scandinavica, B31, 171 (1977).CrossRefGoogle Scholar
7. Clearfield, A., Vaughan, P. A., Acta Cryst., 9, 555 (1956).CrossRefGoogle Scholar
8. Livage, J., Doï, K., Mazières, C., J. Am. Ceram. Soc, 51, 349 (1968).CrossRefGoogle Scholar
9. Clearfield, A., Inorg. Chem., 3, 146 (1964).CrossRefGoogle Scholar
10. Clearfield, A., Rev. Pure and Appl. Chem., 14, 91 (1964).Google Scholar
11. Fryer, J. R., Hutchison, J. L., Patterson, R., J. Colloids and Interface Sci., 34, 238 (1970).CrossRefGoogle Scholar
12. Bénard, P., Louer, M., Louer, D., J. Solid State Chem., 94, 27 (1991).CrossRefGoogle Scholar
13. Clearfield, A., Stynes, J. A., J. Inorg. Nucl. Chem., 26, 117 (1964).CrossRefGoogle Scholar
14. McWhan, D. B., Lundgren, G., Inorg. Chem., 5, 284 (1966).CrossRefGoogle Scholar
15. Squattrito, P. J., Rudolf, P. R., Clearfield, A., Inorg. Chem., 26, 4240 (1987).CrossRefGoogle Scholar
16. El Brahami, M., Durand, J., Cot, L., Eur. J. Solid State Inorg. Chem., 25, 185 (1988).Google Scholar
17. Blesa, M. A., Maroto, A. J. G., Passaggio, S. I., Figliolia, N. E., Rigotti, G., J. Mater. Sci., 20, 4601 (1985).CrossRefGoogle Scholar