Skip to main content Accessibility help
×
Home

Complex Oxide Interfaces: A Path to Design New Materials

  • Hanns-Ulrich Habermeier (a1)

Abstract

Heterostructures composed of transition metal oxides with strong electron correlation offer a unique opportunity to design new artificial materials whose electrical, magnetic and optical properties can be manipulated by tailoring the occupation of the d-orbitals of the transition metal in the compound. This possibility is an implication of symmetry constraints at interfaces with the consequence of a reconstruction of the coupled charge-, spin-, and orbital states of the constituents and their interactions. Novel architectures can be constructed showing functions well beyond charge density manipulations determining the functionality of conventional semiconductor heterostructures. Success in this endeavor requires the mastering of technological prerequisites such as structurally as well as chemically controlled interface preparation down to atomic scales. Additionally, a fundamental understanding of the modifications of the electronic structure at the interface imposed by structural boundary conditions and consequently by the constituent’s orbital occupation is required. A path towards a new generation of electronic devices with multiple functionalities can thus be opened by exploiting the correlation driven interface phenomena. In this paper, the technological challenges and experimental realizations along this concept are described with an emphasis of growth techniques based on the pulsed laser deposition method. As a case study, results of investigations of YBa2Cu3O7/La2/3Ca1/3MnO3superlattices are compiled and the conclusions regarding the orbital manipulation at the interface are used to pave the way for orbital engineering of oxides with electronic structures similar to the cuprates in order to find novel ordered quantum states at the interfaces including magnetism and superconductivity.

Copyright

References

Hide All
1. Klitzing, K. v. et al. ., Phys. Rev. Lett. 45, 494 (1980).
2. Grünberg, P. et al. ., Phys. Rev. Lett. 85, 2442 (1986).
3. Ohtomo, A. et al. ., Nature 427, 423, (2004)
4. Reyren, N. et al. ., Science 317. 1196, (2007)
5. Thiel, S. et al. ., Science 313, 1942, (2006).
6. Chakhalian, J. et al. ., Nature Physics 2, 244246, (2006).
7. Science 317, 1844, (2007)
8. MRS Bulletin 33 No 11 (2008)
9. Mannhart, J. et al. ., Science 327, 1607 (2010).
10. Hwang, H. Y. et al. . Nature Materials 11, 103 (2012)
11. Nakagawa, N. et al. . Nature Materials 5, 204 (2006)
12. Takahashi, K. S. et al. . Appl. Phys. Lett. 79 1324 (2001)
13. Ohtomo, A. et al. . Nature 419, 378 (2002)
14. Gozar, A. et al. . Nature 455, 782 (2008)
15. Ryazanov, V. V. et al. ., Phys. Rev. Lett., 86, 2427 (2001)
16. Chakhalian, J. et al. ., Science 318, 1114, (2007).
17. Sefrioui, Z. et al. ., J. Appl. Phys. 89, 8026, (2001).
18. Habermeier, H.-U. et al. ., Physica C 364, 298, (2001).
19. Przyslupski, P. et al. ., Physica C 387, 40, (2003).
20. Sefrioui, Z. et al. ., Appl. Phys. Lett. 81, 4568, (2002).
21. Oh, B. et al. ., Phys. Rev. B 37, 78617864, (1988)
22. Bormann, R. et al. ., Appl. Phys. Lett. 54, 2148, (1989)
23. Somekh, R. E., et al. . In Concise Encyclopedia of Magnetic and Superconducting Materials, Evetts, J. (ed.), Pergamon Press, Oxford, 431, (1992).
24. Raistrick, I. D., et al. . In Interfaces in High Tc Supercon-ducting Systems, Shinde, S. L., and Rudman, A., (eds.), Springer-Verlag, Berlin, 28 (1994),
25. Habermeier, H.-U., Mat. Today, 10, 34 (2007)
26. Dijkamp, D. et al. ., Appl. Phys. Lett 51, 619, (1987).
27. Rijnders, G.J.H.M. et al. ., Appl. Phys. Lett. 70, 1888 (1997)
28. Kuru, Y. et al. ., J. of Crystal Growth, 311, 3613, (2009)
29. Sambri, A. et al. . , J. Appl. Phys. 104, 053304 (2008)
30. Alexandrov, V. E. et al. . Europ. Phys. J. B 72, 53(2009)
31. Bozovic, I. et al. ., Physica C, 235, 178, (1994)
32. Eckstein, J. E. et al. ., MRS Bull. 19, 44 (1994)
33. Maier, J., Phys. Chem Chem Phys., 11, 3011 (2009)
34. Vollmann, M. et al. ., J. Am. Ceram. Soc. 77, 235 (1994)
35. Sata, N. et al. ., Nature 408, 946, (2000)
36. Tschoppe, A., J. Electroceramics, 14, 5 (2005)
37. Mannhart, J. and Hilgenkamp, H., Supercond. Sci. Technol. 10, 880, (1997)
38. Schmehl, A. et al. .Europhys. Lett. 47, 110 (1999)
39. Pavlenko, N. et al. . Phys. Rev. B 85, 020407 (2012)
40. Caviglio, A.D. et al. . Nature 456, 624 (2008)
41. Okamoto, S. and Millis, A. J., Nature 428, 630 (2004)
42. Willmott, P.R. et al. . Phys. Rev. Lett. 99, 155502 (2007)
43. Siemons, W. et al. . Phys. Rev. Lett. 98, 196802 (2007)
44. Habermeier, H.-U. et al. . J. of Supercond. 15, 425, (2002).
45. Habermeier, H.-U. et al. ., Transactions of J-MRS. 29 1422, (2004).
46. Chaloupka, J. et al. ., Phys. Rev. Lett. 100, 016404 (2008).
47. Hansmann, P. et al. ., Phys. Rev, Lett. 103, 016401 (2009)
48. Koster, G. et al. . Appl. Phys. Lett 73, 2920 (1998)
49. Boris, A. V. et al. . Science 332, 937 (2011).
50. Benckiser, E. et al. . Nature Mat 10, 189 (2011).

Keywords

Complex Oxide Interfaces: A Path to Design New Materials

  • Hanns-Ulrich Habermeier (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed