Skip to main content Accessibility help
×
Home

Complementary Hfet Technology for Low-Power Mixed-Mode Applications

  • A. G. Baca (a1), M. E. Sherwin (a2), J. C. Zolper (a1), D. F. Dubbert (a1), V. M. Hietala (a1), R. J. Shul (a1), L. R. Sloan (a1) and M. J. Hafich (a1)...

Abstract

Development of a complementary heterostructure field effect transistor (CHFET) technology for low-power, mixed-mode digital-microwave applications is presented. An earlier digital CHFET technology with independently optimizable transistors which operated with 319 ps loaded gate delays at 8.9 fJ is reviewed. Then work demonstrating the applicability of the digital nJFET device as a low-power microwave transistor in a hybrid microwave amplifier without any modification to the digital process is presented. A narrow band amplifier with a 0.7 × 100 μm nJFET as the active element was designed, constructed, and tested. At 1 mW operating power, the amplifier showed 9.7 dB of gain at 2.15 GHz and a minimum noise figure of 2.5 dB. In addition, next generation CHFET transistors with sub 0.5 μm gate lengths were developed. Cutoff frequencies, ft of 49 GHz and 11.5 GHz were achieved for n- and p-channel FETs with 0.3 and 0.4 μm gates, respectively. These FETs will enable both digital and microwave circuits with enhanced performance.

Copyright

References

Hide All
[1] Grider, D. E., Ruden, P. P., Nohava, J. C., Mactaggart, I. R., Stronczer, J. J., and Tran, R. H., “0.7 Micron Gate Length Complementary AI0. 75Ga0.2 5As/GaAs HIGFET Technology for High Speed/Low Power Digital Circuits,” IEDM Technical Digest, pp. 331334, 1992.
[2] Abrokwah, J. K., Huang, J. H., Ooms, W., Shurboff, C., Hallmark, J. A., Lucero, R., Gilbert, J., Bernhardt, B., and Hansell, G., “A Manufacturable Complementary GaAs Process,” IEEE GaAs IC Symposium Technical Digest, pp. 127130, 1993.
[3] Kiehl, R. A., Yates, J., Palmateer, L. F., Wright, S. L., Frank, D. J., Jackson, T. N., Degelormo, J. F., and Fleischman, A. J., “High-Speed, Low-Voltage, Complementary Heterostructure FET Circuit Technology,” IEEE GaAs IC Symposium Technical Digest, pp. 101104, 1991.
[4] Matsumoto, K., Ogura, M., Wada, T., Yao, T., Hayashi, Y., Hashizume, N., Kato, M., Fukuhara, N., Hirashima, H., and Miyashita, T., “Complementary GaAs SIS FET Inverter Using Selective Crystal Regrowth Technique,” IEEE Electron Device Letters, vol.7, pp. 182184, 1986.
[5] Mizutani, T., Fujita, S., and Yanagawa, F., “Complementary Circuit with AIGaAs/GaAs Heterostructure MISFETs Employing High-Mobility Two-Dimensional Electron and Hole Gases,” Electronics Letters, vol. 21, pp. 11161117, 1985.
[6] Zuleeg, R., Notthoff, J. K., and Troeger, G. L., “Double-Implanted GaAs Complementary JFETs,” IEEE Electron Device Letters, vol. 5, pp. 2123, 1984.
[7] Davari, B., Chang, W. H., Petrillo, K. E., Wong, C. Y., Moy, D., Taur, Y., Wordeman, M. R., Sun, J. Y. C., Hsu, C. C. H., and Polcari, M. R., “A High-Performance 0.25 μm CMOS Tehcnology: II-Technology,” IEEE Transactions on Electron Devices, vol. 39., pp. 967975, 1992.
[8] Scherrer, D., Kruse, J., Laskar, J., Feng, M., Wada, M., Takano, C., and Kasahara, J., “Low-Power Performance of 0.5 μm JFET for Low-Cost MMIC's in Personal Communications,” IEEE Electron Device Letters, vol. 14, pp. 428430, 1993.
[9] Baca, A. G., Zolper, J. C., Sherwin, M. E., Robertson, P. J., Shul, R. J., Howard, A. J., Rieger, D. J., and Klem, J. F., “Complementary GaAs Junction-Gated Heterostructure Field Effect Transistor Technology,” IEEE GaAs IC Symposium Technical Digest, pp. 5962, 1994.
[10] Sherwin, M. E., Zolper, J. C., Baca, A. G., Shul, R. J., Howard, A. J., Rieger, D. J., Klem, J. F., and Hietala, V. M., “An All Implanted Self-Aligned Enhancement Mode n-JFET with Zn Gates for GaAs Digital Applications,” IEEE Electron Device Letters, vol. 15, pp. 242244, 1994.
[11] Zolper, J. C., Sherwin, M. E., Baca, A. G., Shul, R. J., Klem, J. F., and Hietala, V. M., “Enhanced High Frequency Performance in a GaAs, Self-Aligned, n-JFET Using a Carbon Buried p-Implant,” IEEE Electron Device Letters, vol 5, pp. 493495, 1994.
[12] Zolper, J. C., Baca, A. G., and Chalmers, S. A., “Thermally Stable Oxygen Implant Isolation of p-type Al0.2Ga0.8As,” Applied Physics Letters, vol. 62, pp. 25362538, 1993.
[13] Shul, R. J., Rieger, D. J., Baca, A. G., Constantine, C., and Barratt, C., “Anisotropic Electron Cyclotron Resonance Etching of Tungsten Films on GaAs.,” Electronics Letters, vol. 30, pp. 8485, 1994.
[14] Shul, R. J., Baca, A. G., Rieger, D. J., and Howard, A. J., “Anisotropic Etching of WSi Films on GaAs,” Electronics Letters, vol. 31, pp. 317318, 1995.
[15] Shul, R. J., Sherwin, M. E., Baca, A. G., Zolper, J. C., and Rieger, D. J., “Short Gate Etching of W/WSi Bilayer Gates,” Electronics Letters, vol 32, pp. 7071, 1996.
[16] Sherwin, M. E., Zolper, J. C., Baca, A. G., Drummond, T. J., Shul, R. J., Howard, A. J., Rieger, D. J., Schneider, R. P., and Klem, J. F., “Comparison of Mg and Zn Gate Implants for GaAs n-channel Junction Field Effect Transistors,” Journal of Electronic Materials, vol. 23, pp. 809818, 1994.
[17] Lahav, A. G., Wu, C. S., and Baiocchi, F. A., “WSix Refractory Metallization for GaAs Metal-Semiconductor Field Effect Transistors,” J. Vac. Sci. Technol., vol. B6, pp. 17851795.
[18] Zolper, J. C., Baca, A. G., Sherwin, M. E., and Shul, R. J., “High Performance GaAs JFET with a Shallow Implanted Cd-Gate,” Electronics Letters, vol. 31, pp. 923924, 1995.
[19] Baca, A. G., Howard, A. J., Shul, R. J., and Sherwin, M. E., “Trenching Observed During Sidewall Formation in GaAs Self-Aligned Refractory Gate FETs,” Electronics Letters, vol. 32, p. 7475, 1996.
[20] Ruden, P. P., Shur, M., Arch, D. K., Daniels, R. R., Grider, D. E., Nohava, T. E., “Quantum-Well p-Channel A1GaAs/InGaAs/GaAs Field Effect Transistors,” IEEE Trans. Elect. Devices, vol. 36, pp. 23712379, 1989.

Complementary Hfet Technology for Low-Power Mixed-Mode Applications

  • A. G. Baca (a1), M. E. Sherwin (a2), J. C. Zolper (a1), D. F. Dubbert (a1), V. M. Hietala (a1), R. J. Shul (a1), L. R. Sloan (a1) and M. J. Hafich (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed