Skip to main content Accessibility help
×
Home

Complementary Experimental Techniques for Multi-Scale Modeling of Plasticity

  • L. E. Levine (a1), G. G. Long (a1) and D. R. Black (a1)

Abstract

Some recently-developed experimental techniques, such as in situ ultra-small-angle Xray scattering (USAXS), have demonstrated a capability for measuring aspects of dislocation structure evolution that are inaccessible to other experimental methods. However, no single technique can provide the entire range of information required by theoretical and computational researchers. It is only through the synergy of several experimental techniques (such as USAXS, transmission electron microscopy, and X-ray diffraction imaging) that much of the required quantitative information can be obtained. Ultimately, the development of additional new experimental techniques will also be required.

Copyright

References

Hide All
1 Kubin, L. P. and Canova, G., Scripta Metall., 27, 957 (1992).
2 Zbib, H. M., Rhee, M., and Hirth, J. P., in “Advances in Engineering Plasticity and Its Applications,” Ed. Abe, T. and Tsuta, T., Pergamon, Oxford, 15 (1996).
3 Schwarz, K. W., J. Appl. Phys., 85, 108 (1999).
4 Zaiser, Michael and Hähner, Peter, Phil. Mag. Lett., 73, 369 (1996).
5 Hähner, Peter, Bay, Karlheinz, and Zaiser, Michael, Phys. Rev. Lett., 81, 2470 (1998).
6 Thomson, R. and Levine, L. E., Phys. Rev. Lett., 81, 3884 (1998).
7 Bakó, B. and Groma, I., Phys. Rev. B, 60, 122 (1999).
8 Portevin, A. and Chatelier, F. Le, C. R. Acad. Sci. Paris, 176, 507 (1923).
9 Mertens, F., Scott Franklin, V., and Marder, M., Phys. Rev. Lett., 78, 4502 (1997).
10 Hähner, P., Acta Mater., 45, 3695 (1997).
11 Sutton, A. P. and Balluffi, R. W., “Interfaces in Crystalline Materials,” Clarendon Press, Oxford, 704 (1995).
12 Kubin, L., in “Treatise in Materials Science and Technology,” Vol. 6, Ed. Cahn, R. W., Haasen, P. and Kramer, E. L., VCH-Weinberg (1993).
13 Sevillano, J. Gil, in “Treatise in Materials Science and Technology”, Vol. 6, Ed. Cahn, R. W., Haasen, P. and Kramer, E. L., VCH-Weinheim (1993).
14 Argon, A., in “Physical Metallurgy”, Ed. Cahn, R. W. and Haasen, P., Pergamon, New York (1997).
15 Kullman-Wilsdorf, D., Mat. Res. Innovat., 1, 265 (1998).
16 Zhou, S. J., Preston, D. L., Lorndahl, P. S., and Beazley, D. M., Science, 279, 1525 (1998).
17 Rodney, D. and Phillips, R., Phys. Rev. Lett., 82, 1704 (1999).
18 Wickham, L. K., Schwarz, K. W., and Stolken, J. S., unpublished
19 Chung, J. S. and Ice, G. E., J. Appl. Cryst., 86, 5249 (1999).
20 Levine, L. E., Allen, A. J., and Gnaupel-Herold, Thomas, unpublished.
21 Moriarty, J. A., Phys. Rev. B, 42, 1609 (1990).
22 Moriarty, J. A., Phys. Rev. B, 49, 12431 (1994).
23 Xu, W. and Moriarty, J. A., Phys. Rev. B, 54, 6941 (1996).
24 Campbell, Geoffrey H., Wien, Walter L., King, Wayne E., Foiles, Stephen M., and Ruhle, Manfred, Ultramicroscopy, 51, 247 (1993).
25 Mills, Michael J. and Stadelmann, Pierre, Phil. Mag. A, 60, 355 (1989).
26 Mills, Michael J., Daw, Murray S., and Foiles, Stephen M., Ultramicroscopy, 56, 79 (1994).
27 Holian, Brad Lee and Lomdahl, Peter S., Science, 280, 2085 (1998).
28 Schwarz, K. W., J. Appl. Phys., 85, 120 (1999).
29 LeGoues, F. K., unpublished.
30 Devincre, B. and Kubin, L. P., Mod. Simul. Mater. Sci. Eng., 2, 559 (1994).
31 Foecke, T. and vanHeerden, D., in “Chemistry and Physics of Nanostructures and Related Non-Equilibrium Materials,” Ed. Ma, E., Fultz, B., Shull, R., Morral, J., and Nash, P., TMS, Pittsburgh, 193, (1997).
32 Ham, R. K., Phil. Mag 7, 1177 (1962). 741 (1980).
33 Seeger, A., The Relation Between Structure and Mechanical Properties of Metals 1, H.M.S.O., London, p. 3 (1963).
34 Hirsch, P. B., The Relation Between Structure and Mechanical Properties of Metals 1, H.M.S.O., London, p. 39 (1963).
35 Mader, Siegfried, Seeger, Alfred, and Thieringer, Hans-Martin, J. Appl. Phys., 34, 3376 (1963).
36 Basinski, Z. S., Discuss. Faraday Soc. 38, 93 (1964).
37 Steeds, J. W., Proc. Roy. Soc. A292, 343 (1966).
38 Göttler, E., Phil. Mag. 28, 1057 (1973).
39 Prinz, F. and Argon, A. S., Phys. Stat. Sol. A57, 741 (1980).
40 Young, C. T., Headley, T. J., Lytton, J. L., Mater. Sci. Eng. 81, 391 (1986).
41 Hughes, D. A., Acta Met. et Mater. 41, 1421 (1996).
42 Young, F. W. Jr., J. Appl. Phys. 32, 192 (1961).
43 Alers, G. A and Salama, K., Dislocation Dynamics, Ed. Ronsenfield, A. R., Hahn, G. T., Bement, A. L. Jr., and Jaffee, R. I., McGraw-Hill, Inc., New York, 211 (1968).
44 Bueren, H. G. Van, Imperfections in Crystals, North-Holland Publishing Company, Amsterdam, Chapter VI (1961).
45 Bueren, H. G. Van, Imperfections in Crystals, North-Holland Publishing Company, Amsterdam, Chapter XV (1961).
46 Reno, R. C., Swartzendruber, L. J., and Bennett, L. H., NDT International, October, 224 (1979).
47 Hashimoto, Eiji, Ueda, Yoshitake, Uematsu, Nobuyuki, Iwami, Masayuki, and Kino, Takao, J. Phys. Soc. Japan 61, 3799 (1992).
48 Wilkens, M., Phys. Status Solidi, A2, 359 (1970).
49 Krivoglaz, M. A., X-ray and Neutron Diffraction in Nonideal Crystals, Springer, Berlin (1996).
50 Levine, L. E. and Thomson, Robb, Acta Cryst., A53, 590 (1997).
51 Mughrabi, H., Ungár, T., Kienle, W., and Wilkens, M., Phil. Mag. A53, 793 (1986).
52 Ungár, T., Mat. Sci. For. 166–169, 23 (1994).
53Direct Observation of Imperfections in Crystals,” Ed. by Newkirk, J. B. and Wer-nick, J. H., Interscience Publishers, New York (1961).
54 Bowen, D. Keith and Tanner, Brian K., “High Resolution X-ray Diffractometry and Topography,” Taylor & Francis, London (1998).
55 Steiner, Bruce, Levine, L. E., Cull, T. C. and Ray, C. S., J. Non-Cryst. Sol. 204, 13 (1996).
56 Thomson, Robb, Levine, L. E., and Long, G. G., Acta Cryst. A55, 433 (1999).
57 Long, G. G., Levine, L. E., and Thomson, Robb, J. Appl. Cryst., in press.
58 Levine, L. E., Long, G. G., and Thomson, Robb, submitted to Phys. Rev. B (1999).
59 Argon, A. S. and Haasen, P., Acta metall. mater. 41, 3289 (1993).
60 Mughrabi, H., in “Continuum Models of Discrete Systems 4,” Ed. by Brulin, O. and Hsieh, R. K. T., North-Holland Pub. Comp. (1981).
61 Hughes, D. A., Liu, Q., Chrzan, D. C., and Hansen, N., Acta mater. 45, 105 (1997).
62 Prinz, F., Argon, A. S., and Moffett, W. C., Acta metall., 30, 821 (1982).
63 Alden, T. H., Rev. Sci. Instr., 31, 897 (1960).
64 Levine, L. E. and Fields, R. J., NISTIR 5867, U. S. Department of Commerce, National Institute of Standards and Technology (1996).
65 Haruta, Kyoichi, J. Appl. Phys., 76, 1789 (1965).
66 Warren, B. E., “X-ray Diffraction,” Dover, Mineola, N. Y., 19 (1990).
67 Long, G. G., Allen, A. J., Ilavsky, J., Jemian, P. R., and Zschack, P., Abstracts for Synchrotron Radiation Instrumentation (SRI-XI), Stanford, CA, 44 (1999).
68 Long, G. G., Jemian, P. R., Weertman, J. R., Black, D. R., Burdette, H. E., and Spal, R., J. Appl. Cryst., 24, 30 (1991).

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed