Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-25T08:14:46.477Z Has data issue: false hasContentIssue false

Comparison of Structural Analysis and Electrochemical Studies of C-Li4Ti5O12 and CNT-Li4Ti5O12 Nanocomposites particles used as Anode for Lithium Ion Battery

Published online by Cambridge University Press:  17 June 2013

Xiangcheng Sun
Affiliation:
Department of Electrical and Computer Engineering, University of Waterloo, Canada
Xuedong Bai
Affiliation:
Institute of Physics, Chinese Academy of Sciences, Beijing, China
Yongqing Wang
Affiliation:
Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
M. Hegde
Affiliation:
Department of Chemistry, University of Waterloo, Canada
I. D. Hosein
Affiliation:
Department of Chemistry, University of Waterloo, Canada
P. V. Radovanovic
Affiliation:
Department of Chemistry, University of Waterloo, Canada
Yu Guo Guo
Affiliation:
Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
Bo Cui
Affiliation:
Department of Electrical and Computer Engineering, University of Waterloo, Canada
Get access

Abstract

Carbon-Li4Ti5O12 (C-LTO) and carbon nanotube-Li4Ti5O12 (CNT-LTO) nanocomposite particles have been synthesized by hydrothermal method and a following high-temperature calcinations using a mixture of micro-size Li-Ti-O precursors and conducting black and carbon nanotubes, respectively. Two different types of coating layers have been characterized and analyzed on two kinds of Li4Ti5O12 particles surface by high resolution transmission electron microscopy images (HR-TEM) and selected area electron diffraction (SAED). Typical HR-TEM images and SAED patterns at nano-scale confirmed and showed that both particles exhibited a well-developed spinel nanocrystal with average sizes around 20-50 nm. The C-LTO particles exhibited the roughly spherical shape with more than 5 nm graphitic coating uniformly on the spherical surfaces; however, the CNT-LTO particles showed uniform square nanocrystal with edge length around 30 nm and a few layers of graphene covering the surface.

Electrochemical studies of galvanostatic discharge/charge cycling capacity testing indicated that both Li4Ti5O12particles showed the superior initial discharge capacity of more than 200 mA·h/g at 0.1C rate, and also the CNT-LTO particles show much improved specific capacity than that of the C-LTO particles during different cycling processing. It has been proposed that, grephene covering layers and the CNT interconnection networks are prove to increase electronic conductivity and improve the kinetics of Li4Ti5O12 toward fast lithium insertion/extraction. The comparative experimental results demonstrated that both nanoscale grephene layer and CNT inter-networks among particles is highly effective in improving the electrochemical properties of the CNT-LTO particles.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Zaghib, K., Simoneau, M., and Armand, M., J. Power Sources, 81, 300 (1999)CrossRefGoogle Scholar
Zaghib, K., Armand, M., and Gauthier, M., J. Electrochem. Soc., 145, 3135 (1998)CrossRefGoogle Scholar
Ohzuku, T., Ueda, A., and Yamamoto, N., J. Electrochem. Soc., 142, 1431 (1995)CrossRefGoogle Scholar
Ferg, E., Gummow, R.J., de Kock, A., and Thackeray, M. M., J. Electrochem Soc., 141, L147(1994)CrossRefGoogle Scholar
Woo, S. W., Dokko, K., and Kanamura, K., Electrochimica Acta, 53, 79 (2007)CrossRefGoogle Scholar
Cheng, L., Liu, H. J., Zhang, J. J., Xiong, H. M. and Xia, Y. Y., J. Electrochem. Soc., 153, A1472 (2006)CrossRefGoogle Scholar
Li, J. R., Tang, Z. L., and Zhang, Z. T., Electrochem. Commun., 7, 894 (2005)CrossRefGoogle Scholar
Jiang, C. H., Ichihara, M., Honma, I., and Zhou, H. S., Electrochim. Acta, 52, 6470 (2007)CrossRefGoogle Scholar
Huang, S., Woodson, M., Smalley, R., and Liu, J., Nano Lett., 4, 1025 (2004)CrossRefGoogle Scholar
Amine, K., Belharouak, I., Chen, Z. H., Tran, T., Yumoto, H., Ota, N., Myung, S.T., and Sun, Y.K. Adv. Mater., 22, 3052 (2010)CrossRefGoogle Scholar
Wang, Y., Liu, H., Wang, K., Eiji, H., Wang, Y. and Zhou, H., J. Mater. Chem., 19, 6789 (2009)CrossRefGoogle Scholar
Ding, Z. J., Zhao, L., Suo, L.M., Jiao, Y., Meng, S., Hu, Y.S., Wang, Z.X., Chen, L.Q., Phys. Chem. Chem. Phys., 13, 15127 ( 2011)CrossRefGoogle Scholar
Lu, H. W., Zeng, W., Li, Y. S., and Fu, Z. W., J. Power Sources, 164, 874 (2007)CrossRefGoogle Scholar
Kim, J. Y., and Cho, J. P., Electrochem. Solid-State Lett., 10, A81(2007)CrossRefGoogle Scholar
Prakash, A. S., Manikandan, P., Ramesha, K., Sathiya, M., Tarascon, J. M., and Shukla, A. K., Chem. Mater., 22, 2857 ( 2010)CrossRefGoogle Scholar
Sorensen, E. M., Barry, S. J., Jung, H. K., Rondinelli, J. R., Vaughey, J. T. and Poeppelmeier, K. R., Chem. Mater., 18, 482 (2006)CrossRefGoogle Scholar
Zhu, G., Liu, H., Zhuang, J., Wang, C., and Xia, Y., Energy Environ. Sci., 4, 4016 (2011)CrossRefGoogle Scholar
Cheng, L., Yan, J., Zhu, G. N., Luo, J. Y., and Xia, Y. Y., J. Mater. Chem., 20, 595(2010)CrossRefGoogle Scholar
Gao, J., Ying, J. R., Jiang, C. Y., and Wan, C. R., J. Power Sources, 166, 255 (2007)CrossRefGoogle Scholar
Huang, J. J. and Jiang, Z. Y., Electrochim. Acta, 53, 7756 (2008)CrossRefGoogle Scholar
Park, K. S., Benayad, A., Kang, D.J., and Doo, S. G., J. Am. Chem. Soc., 130, 14930 (2008)CrossRefGoogle Scholar
Kim, H. K., Bak, S. M., and Kim, K. B., Electrochem. Communication, 12, 1768 (2010)CrossRefGoogle Scholar
Li, B. H., Ning, F., He, Y. B., Du, H. D., Yang, Q.H., Ma, J., Kang, F.Y., and Hsu, C.T., Int. J. Electrochem. Sci., 6, 3210 (2011)Google Scholar
Amine, K., Belharouak, I., Chen, Z. H., Tran, T., Yumoto, H., Ota, N., Myung, S. T. and Sun, Y. K., Adv. Mater., 22, 3052 (2010)CrossRefGoogle Scholar
Ren, Y., Armstrong, A. R., Jiao, F., and Bruce, P. G., J. Am. Chem. Soc., 132, 996 (2010)CrossRefGoogle Scholar
Wu, Z. S., Ren, W., Wen, L., Gao, L., and Cheng, H. M., ACS Nano, 4, 3187 ( 2010)CrossRefGoogle Scholar
Shi, Y., Wen, L., Li, F., and Cheng, H. M., J. Power Sources, 196, 8610 (2011)CrossRefGoogle Scholar
Shen, L., Yuan, C., Luo, H. J., Zhang, X., Xu, H. and Xia, Y., J. Mater. Chem., 20, 6998 (2010)CrossRefGoogle Scholar
Ryu, J. H., J. Electrochemical Sci. Tech., 2, 136 (2011)CrossRefGoogle Scholar
Borghols, W. J. H., Wagemaker, M., Lafont, U., Kelder, E. M., and Mulder, F. M., J. Am. Chem. Soc., 131, 17786 (2009)CrossRefGoogle Scholar
Liu, J., Li, X. F., Yang, J., Geng, D. S., Li, Y. L., Wang, D., Li, R., Sun, X. L., Cai, M., and Verbrugge, M. W., Electrochimica Acta, 63, 100 (2012)CrossRefGoogle Scholar
Chen, J., Yang, L., Fang, S., and Tang, Y., Electrochim. Acta, 55, 6596 (2010)CrossRefGoogle Scholar
Li, X., Qu, M. Z., Huai, Y. J., and Yua, Z.L., Electrochimica Acta, 55, 2978 (2010)CrossRefGoogle Scholar
Xie, L. L., Xu, Y. D., Zhang, J. J., Cao, X. Y., Wang, B., Yan, X. Y., and Qu, L. B., Int. J. Electrochem. Sci. 8, 1701 (2013)Google Scholar
Wang, Y. Q., Gu, L., Guo, Y. G., Li, H., He, X. Q., Tsukimoto, S., Ikuhara, Y. and Wan, L. J., J. Am. Chem. Soc., 134, 7874 (2012)CrossRefGoogle Scholar
Wang, J., Zhao, H., Yang, Q., Wang, C. M., and Xia, Q., J. Powder Sources, 222, 196 (2013)CrossRefGoogle Scholar