Hostname: page-component-8448b6f56d-42gr6 Total loading time: 0 Render date: 2024-04-20T02:38:03.378Z Has data issue: false hasContentIssue false

Comparison of SiH4 and Si2H6 RTCVD Kinetics using in-situ Spectroscopic Ellipsometry

Published online by Cambridge University Press:  10 February 2011

Y. Z. Hu
Affiliation:
AG Associates Inc., San Jose, CA 95134
S. P. Tay
Affiliation:
AG Associates Inc., San Jose, CA 95134
Y. Wasserman
Affiliation:
AG Associates Inc., San Jose, CA 95134
C. Y. Zhao
Affiliation:
Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599
E. A. Irene
Affiliation:
Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599
Get access

Abstract

A comparison of SiH4 and Si2H6 chemical vapor deposition kinetics was performed in a rapid thermal processing (RTP) system at temperatures between 600 and 800 °C and reactant gas pressures between 1 and 25 mTorr. Quantitative assessment of the nucleation parameters and the microstructures of the deposited polycrystalline Si (poly-Si) films on SiO2 have been determined using in situ real time single wavelength and spectroscopie ellipsometry. In addition to ellipsometry, atomic force microscopy and cross-sectional transmission electron microscopy were used ex situ to observe the nucleation stage and the microstructures of the poly-Si films. In the present study we compare the nucleation, poly-Si film microstructure and surface roughness using SiH4 and Si2H6 in the RTP system and show that under the same processing conditions the saturation nuclei density (1010 cm−2) for Si2H6 is about 6 times higher than that for SiH4 and the poly-Si films from Si2H6 are smoother and have better columnar structure than those from SiH4.

A particularly important parameter for selective epitaxial depositions is the time for nuclei to form, i.e. the incubation time. An operational incubation time were determined from the real time ellipsometric measurements and confirmed by AFM. The incubation times for using SiH4 and Si2H6 are different, but they show similar activation energies of about Einc = 1 eV in the 600–800 °C range. A formula of incubation time tinc was obtained and expressed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Baert, K., Deschepper, P., Poortmans, J., Nijs, J., and Mertens, R., Appl. Phys. Lett. 60, 442 (1992).Google Scholar
2. Cheng, M.L., Kohlase, A., Sato, T., Kobayashi, S., Murota, J., and Mikoshiba, N., Jpn. J. Appl. Phys. 28, L2054 (1989).Google Scholar
3. Friedrich, J.A., Kastelic, M., Neudech, G.W., and Takoudis, C.G., J. Appl. Phys. 65, 713 (1989).Google Scholar
4. Aketagawa, K., Tatsumi, T. and Sakai, J., J. Cryst. Growth, 111, 860(1991).Google Scholar
5. Hong, C.H., Park, C.Y. and Kim, H.J., J. Appl. Phys. 71, 5427 (1992).Google Scholar
6. Hu, Y.Z., Diehl, D.J., Liu, Q., Zhao, C.Y. and Irene, E.A., Appl. Phys. Let., 66, 700 (1995).Google Scholar
7. Li, M., Hu, Y.Z., Wall, J., Conrad, K. and Irene, E.A., J. Vac. Sci. Technol., A 11, 1886 (1993).Google Scholar
8. Li, M., Hu, Y.Z., Irene, E.A., Liu, L., Christensen, K.N. and Maher, D.M., J. Vac. Sci. Technol., B 13, 105(1995).Google Scholar
9. Hu, Y.Z., Diehl, D.J., Zhao, C.Y., Wang, C.L., Liu, Q. and Irene, E.A., Christensen, K.N., Venable, D., and Maher, D.M., J. Vac. Sci. Technol., B 14, 744 (1996).Google Scholar
10. Aspnes, D.E. and Studna, A.A., Phys. Rev., B27, 985 (1983).Google Scholar
11. Hu, Y.Z., Joseph, J. and Irene, E.A., J. Vac. Sci. Technol., A 11, 1786 (1993).Google Scholar
12. Dana, S.S., Liehr, M., Anderle, M. and Rubloff, G.W., Appl. phys. Lett., 61, 3035 (1992).Google Scholar
13. Chakraverty, B.K., Basic Problem: Thin Film Physics (Vanden hoeck and Ruprecht, Gottingen, Germany, 1966), p43 Google Scholar
14. Kato, M., Sato, T., Murota, J., and Mikoshiba, N., J. Cryst. Growth, 99, 240(1990).Google Scholar
15. Poppa, H., J. Appl. Phys., 38, 3883 (1967).Google Scholar
16. Violette, K.E., Sanganeria, M.K., Öztürk, M.C., Harris, G. and Maher, D.M., J. Electrochem. Soc, 141, 3269(1994).Google Scholar
17. Liehr, M., Dana, S.S. and Anderle, M., J. Vac. Sci. Technol., A 10, 869 (1992).Google Scholar
18. Yew, T.R. and Reif, R., J. Appl. Phys. 65, 2500 (1989).Google Scholar