Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-25T07:50:56.741Z Has data issue: false hasContentIssue false

Comparison of Porous Silicon Etched Gently and Under Illumination

Published online by Cambridge University Press:  28 February 2011

Adam A. Filios
Affiliation:
University of North Carolina at Charlotte, Charlotte NC 28223
Raphael Tsu
Affiliation:
University of North Carolina at Charlotte, Charlotte NC 28223
Get access

Abstract

Porous silicon samples prepared in the dark under "gentle" etching conditions clearly demonstrate effects of quantum confinement, such as a correlation of the photoluminescence peak energy with the downshift of the Raman line from 521 cm−1 for bulk silicon, and a blue shift in the remaining weak photoluminescence after thermal annealing. On the other hand, samples prepared under illumination as well as those heavily etched in the dark, though luminesce brightly, show no significant effects of quantum confinement, suggesting a different dominant mechanism for the observed luminescence.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Canham, L. T., Appl. Phys. Lett. 57 (10), 1046 (1990).Google Scholar
2 Lehmann, V. and Gösele, U., Appl. Phys. Lett. 58 (8), 856 (1991).Google Scholar
3 Gardelis, S., Rimmer, J.S., Dawson, P., Hamilton, B., Kubiak, R.A., Whall, T.E., and Parker, E.H.C., Appl. Phys. Lett. 59 (17), 2118 (1991).Google Scholar
4 Bsiesy, A., Vial, J.C., Gaspard, F., Herino, R., Ligeon, M., Muller, F., Romestein, R., Wasiela, A., Halimaoui, A., and Bomchil, G., Surf. Sci. 254, 195 (1991).Google Scholar
5 Tsu, R., Shen, H., Dutta, M., Appl. Phys. Lett. 60 (1), 112 (1992).Google Scholar
6 Beale, M.I.J., Benjamin, J.D., Uren, M.J., Chew, N.G. and Cullis, A.G., J. of Crystal Growth 73, 622636 (1985).Google Scholar
7 Cullis, A.G., Canham, L.T., Nature 353, 335 (1991).Google Scholar
8 Cole, M.W., Harvey, J.F., Lux, R., Eckart, D.W. and Tsu, R., Appl. Phys. Lett. 60, 2800 (1992).Google Scholar
9 Tsu, R. and Babic, D., Appl. Phys. Lett. 64 (14), 1806 (1994). More detailed version in R. Tsu and D. Babic, "Doping of a quantum dot and self-limiting effect in electrochemical etching in Porous Silicon", eds. Feng and Tsu, World Scientific Ltd., Singapore, 1994.Google Scholar
10 Prokes, S.M., Glembocki, O.J., Bermudez, V.M., Kaplan, R., Friedersdorf, L.E. and Searson, P.C., Phys. Rev. B 45, 13788 (1992).Google Scholar
11 Brandt, M.S., Fuchs, H.D., Stutzmann, M., Weber, J. and Cardona, M., Solid State Commun. 81 (4), 307 (1992).Google Scholar
12 Tsybeskov, L. and Fauchet, P.M., Appl. Phys. Lett. 64 (15), 1983 (1994).Google Scholar
13 Campbell, I. H. and Fauchet, P.M., Solid state comm. 58, 739 (1986).Google Scholar
14 Koshida, N., Koyama, H., Optoelectronics, 7 (1), 103 (1992).Google Scholar
15 Shih, S., Tsai, C., Li, K.H., Jung, K.H., Campbell, J.C. and Kwong, D.L., Appl. Phys. Lett. 60 (5), 633 (1992).Google Scholar
16 Tsu, R., Nicollian, E.H. and Reisman, A., Appl. Phys. Lett. 55, 1897 (1989).Google Scholar
17 Zhang, D. and Kolbas, R.M., Milewski, P.D., Lichtenwalner, D.J. and Kingon, A.I., Zavada, J.M., Unpublished.Google Scholar
18 In collaboration with Prof. Russell, P..Google Scholar