Hostname: page-component-7bb8b95d7b-qxsvm Total loading time: 0 Render date: 2024-09-23T18:26:27.370Z Has data issue: false hasContentIssue false

Comparison of Multipolar Resonant-Cavity and Magnetic Mirror Microwave ECR Sources for dry Etching of III-V Semiconductors

Published online by Cambridge University Press:  15 February 2011

S. J. Pearton
Affiliation:
Dept. Materials Science & Eng., University of Florida, Gainesville, FL 32611
C. R. Abernathy
Affiliation:
Dept. Materials Science & Eng., University of Florida, Gainesville, FL 32611
F. Ren
Affiliation:
AT&T Bell Laboratories, Murray Hill, New Jersey 07974
Get access

Abstract

Two different microwave ECR sources have been examined for use in dry etching of GaAs, InP and related compounds. The first, a multipolar, tuned-cavity disk source (Wavemat) has been in operation for ∼4 years and provides stable, uniform discharges of BCl3/Ar, CH4/H2, SF6/Ar, HI/H2 and CCl2F2 for smooth, anisotropie pattern transfer into the III-V materials. Electron densities of -5 × 1011 cm-3 are achieved at 1 mtorr for microwave powers of >700W, as determined by microwave interferometry. Additional rf (13.56 MHz) biasing of the sample position is necessary for achieving practical etch rates. The second source is a Astex ECR high-profile geometry, with a drift-tube and secondary magnets near the sample position to improve the plasma confinement and etching uniformity. Similar electron densities are found as with the resonant cavity source, and optimization of the top and bottom magnet currents produces similar etch uniformities. Examples of the etching characteristics of III-V's as a function of microwave power, rf-induced dc bias and sample temperature are given.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Pearton, S. J., Ren, F., Fullowan, T. R., Katz, A., Hobson, W. S., Chakrabarti, U. K. and Abemathy, C. R., Mat. Chem. Phys. 32 215 (1992).Google Scholar
2. Asmussen, J., J. Vac. Sci. Technol. A7 883 (1989).Google Scholar
3. For a review of ECR source design, see Lieberman, M. A. and Gottscho, R. A., in Physics of Thin Films: Advances in Research and Develop, ed. Vossen, J. (Academic Press, NY 1993).Google Scholar
4. Constantine, C., Johnson, D., Pearton, S. J., Chakrabarti, U. K., Emerson, A. B., Hobson, W. S. and Kinsella, A. P., J. Vac. Sci. Technol. B8 596 (1990).Google Scholar
5. Niggebrugge, U., Klug, M. and Gams, G., Inst. Phys. Conf. Ser. 79 367 (1985).Google Scholar
6. Melville, D. L., Simmons, J. G. and Thompson, D. A., J. Vac. Sci. Technol. B. Nov./Dec. (1993).Google Scholar
7. Pearson, D. L. C., Campbell, G. A., Domier, C. W. and Ethimion, D. C., Mat. Res. Soc. Symp. Proc. 777 311(1988).Google Scholar
8. Pearton, S. J., Nakano, T. and Gottscho, R. A., J. Appl. Phys. 69 4206 (1991).Google Scholar
9. Pearton, S. J., Keel, T. A., Katz, A. and Ren, F., Semicond Sci. Technol 8 1889 (1993).Google Scholar
10. Cheung, R., Thomas, S., Beamont, S. P., Doughty, G., Law, V. and Wilkinson, C. D. W., Electron. Lett. 23 857 (1987).Google Scholar
11. Henry, L., Vaudry, C. and Gradjoux, P., Electron. Lett. 23 1253 (1987).Google Scholar
12. McLane, G. F., Cole, M. W., Eckart, D. W., Cooke, P., Moerkirk, R. and Meyyapan, M., J. Vac. Sci. Technol. A11 1753 (1993).Google Scholar
13. Law, V. J. and Jones, G. A. C., Semicond. Sci. Technol. 7 281 (1992).Google Scholar
14. Hayes, T. R. in InP and Related Materials: Processing, Technology and Devices, ed. Katz, A. (Artech House, Boston, 1992).Google Scholar
15. Tachi, S., Tsujimoto, K. and Okudaira, S., Appl. Phys. Lett. 52 616 (1988).Google Scholar
16. Bestwick, T. D., Oehrlein, G. S. and Angeli, D., Appl. Phys. Lett. 57 431 (1990).Google Scholar
17. Tachi, S. and Okudaira, S., J. Vac. Sci. Technol. B4 459 (1986).Google Scholar
18. Choquette, K. D., Wetzel, R. C., Freund, R. S. and Kopf, R. F., J. Vac. Sci. Technol. B10 2725 (1992).Google Scholar
19. Aydil, E. S., Gregus, J. A. and Gottscho, R. A., J. Vac. Sci. Technol. A11 2883 (1993).Google Scholar