Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-25T10:44:56.862Z Has data issue: false hasContentIssue false

Comparison of Interface Formation for GaAs-on-Si and ZnSe-on-Si.

Published online by Cambridge University Press:  28 February 2011

R. D. Bringans
Affiliation:
Xerox Palo Alto Research Center, 3333 Coyote Hill Road, Palo Alto, CA 94304
Marjorie A. Olmsteadt
Affiliation:
Department of Physics, University of California, Berkeley, CA 94720
Get access

Abstract

A comparison is made between the interface formed when GaAs is grown heteroepitaxially on Si(100) substrates with that formed for ZnSe-on-Si(100) growth. Results of core level photoemission spectroscopy show that the Si(100) surface reacts with As atoms to form a stable monolayer, but reacts with Se atoms to form the compound SiSe2. Annealing treatments can also give rise to a submonolayer coverage of Se atoms on Si(100). The SiSe2 compound is also seen at the interface between ZnSe and Si. Island formation appears to occur at the beginning of growth for both GaAs-on-Si and ZnSe-on-Si

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Bringans, R. D., Olmstead, M. A., Uhrberg, R. I. G. and Bachrach, R. Z., Mat. Res. Soc. Symp. Proc. 94, 201, (1987); Appl. Phys. Lett, 51, 523, (1987); Phys. Rev. B, 36, 9569, (1987).Google Scholar
2. Uhrberg, R. I. G., Bringans, R. D., Bachrach, R. Z. and Northrup, J. E., Phys. Rev. Lett., 56, 520 (1986).Google Scholar
3. Weser, T., Bogen, A., Konrad, B., Schnell, R. D., Schug, C. A. and Steinmann, W., Phys. Rev. B, 35, 8184 (1987).CrossRefGoogle Scholar
4. Weser, T., Bogen, A., Konrad, B., Schnell, R. D., Schug, C. A., Moritz, W. and Steinmann, W., Surf. Sci., 201, 245 (1988).Google Scholar
5. Leung, K. T., Terminello, L. J., Hussein, Z., Zhang, X. S., Hayashi, T. and Shirley, D. A., Phys. Rev. B, 38, 8241 (1988).CrossRefGoogle Scholar
6. Weser, T., Bogen, A., Konrad, B., Schnell, R. D., Schug, C. A. and Steinmann, W., in Engstram, O. (Editor), Proc. 18th Int. Conf. on the Physics of Semiconductors, Stockholm, Sweden, August 1986, World Scientific, Singapore, 1987, pp. 97100.Google Scholar
7. Bringans, R. D. and Olmstead, M. A., Phys. Rev. B, (1989).Google Scholar
8. Biegelsen, D. K., Ponce, F. A., Smith, A. J. and Tramontana, J. C., J. Appl. Phys.,61, 1856, (1987).Google Scholar
9. Hull, R. and Fischer-Colbrie, A., Appl. Phys. Lett.,50, 851, (1987).Google Scholar
10. Bringans, R. D., Olmstead, M. A., Ponce, F. A., Biegelsen, D. K., Krusor, B. S. and Yingling, R. D., Mat. Res. Soc. Symp. Proc. 116, 51, (1988); J. Appl. Phys., 64, 3472, (1988).Google Scholar
11.See, for example, Mino, N., Kobayashi, M., Konagi, M. and Takahashi, K., J. Appl. Phys., 58, 793 (1985).Google Scholar
12. Holt, D. B., Thin Solid Films, 24, 1 (1974).CrossRefGoogle Scholar