Skip to main content Accessibility help

Comparison of ICl and IBr for Dry Etching of III-Nitrides

  • C. B. Vartuli (a1), J. W. Lee (a1), J. D. MacKenzie (a1), S. J. Pearton (a1), C. R. Abernathy (a1) and R. J. Shul (a2)...


ICl/Ar ECR discharges provide the fastest dry etch rates reported for GaN, 1.3 µm/min. These rates are much higher than with Cl2/Ar, CH4/H2/Ar or other plasma chemistries. InN etch rates up to 1.15 µm/min and 0.7 µm/min for In0.5Ga0.5N are obtained, with selectivities up to 5 with no preferential loss of N at low rf powers and no significant residues remaining. The rates are much lower with IBr/Ar, ranging from 0.15 µm/min for GaN to 0.3 µm/min for InN. There is little dependence on microwave power for either chemistry because of the weakly bound nature of IC1 and IBr. In all cases the etch rates are limited by the initial bond breaking that must precede etch product formation and there is a good correlation between materials bond energy and etch rate. The fact that low microwave power can be employed is beneficial from the viewpoint that photoresist masks are stable under these conditions, and there is no need for use of silicon nitride or silicon dioxide. Selectivities for GaN over A1N with IC1 and IBr are still lower than with Cl2- only.



Hide All
1. Lin, M.E., Zan, Z.F., Ma, Z., Allen, L.H. and Morkoc, H., Appl. Phys. Lett. 64 887 (1994).
2. Ping, A.T., Adesida, I, Asif Khan, M. and Kuznia, J.N., Electron. Lett. 30 1895 (1994).
3. Lee, H., Oberman, D.B. and Harris, J.S. Jr., Appl. Phys. Lett. 67 1754 (1995).
4. Pearton, S.J., Abernathy, C.R., Ren, F., Lothian, J.R., Wisk, P.W., Katz, A. and Constantine, C., Semicond. Sci. Technol. 8 310 (1993).
5. Pearton, S.J., Abernathy, C.R. and Ren, F., Appl. Phys. Lett. 64 2294 (1994).
6. Zhang, L., Ramer, J., Zheng, K., Lester, L.F. and Hersee, S.D., MRS Fall Meeting, Boston MA, 1995).
7. Shul, RJ., Kilcoyne, S.P., Hagerott Crawford, M., Parmeter, J.E., Vartuli, C.B., Abernathy, C.R. and Pearton, S.J., Appl. Phys. Lett. 66 1761 (1995).
8. Shul, R.J., presented at 189th ECS meeting, Los Angeles CA, May 1996.
9. Vartuli, C.B., Pearton, S.J., Abernathy, C.R., Shul, R.J., Howard, A.J., Kilcoyne, S.P., Parmeter, J.E. and Hagerott-Crawford, M., J. Vac. Sci. Technol. A 14 1011 (1996).
10. Krueger, C.W., Wang, C.A., Hsieh, D. and Flytzani-Stepanopoulos, M., J. Cryst.Growth 153 81 (1995).
11. Krueger, C.W., Wang, C.A. and Flytzani-Stepanopoulos, M., Appl. Phys. Lett. 60 1459 (1992).
12. Flanders, D.C., Pressman, L.D. and Pinelli, G., J. Vac. Sci. Technol. B 8 1990 (1990).
13. Pearton, S.J., Chakrabarti, U.K., Katz, A., Ren, F. and Fullowan, T.R., Appl. Phys. Lett. 60 838 (1992).
14. Pearton, S.J., Chakrabarti, U.K., Hobson, W.S., Abernathy, C.R., Katz, A., Ren, F., Fullowan, T.R., and Perley, A.P., J. Electrochem. Soc. 139 1763 (1992).
15. Gillis, H.P., Choutov, D.A. and Martin, K.P., JOM, August 1996 pp 50-55.
16. Abernathy, C.R., J. Vac. Sci. Technol. A 11 869 (1993).
17. Abernathy, C.R., Mat. Sci. Eng. Rep. 14, 203 (1995).
18. CRC Handbook of Chemistry and Physics (CRC Press, Boca Raton, FL 1990).
19. Harrison, W.A., Electronic Structures and Properties of Solids (Freeman, San Francisco, 1980).
20. Pearton, S.J., Abernathy, C.R., Ren, F., and Lothian, J.R., J. Appl. Phys. 76 1210 (1994).


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed