Skip to main content Accessibility help

Comparison of Film Quality and Step Coverage for Silicon Dioxide Dielectrics Formed by RTCVD Using Tetraethoxysilane and Silane

  • D. S. Miles (a1), G. S. Harris (a2), D. Venables (a2), M. R. Mirabedini (a1), J. J. Wortman (a1), D. M. Maher (a2) and J. R. Hauser (a1)...


Rapid thermal chemical vapor deposition (RTCVD) oxides formed using TEOS and oxygen (O2) are compared with RTCVD oxides formed using silane (SiH4) and nitrous oxide (N2O). These oxides were deposited under varying pressure and gas composition to investigate the film step coverage and electrical properties. Cross-sectional scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used in determining the oxide step coverage. Excellent oxide conformality, greater than 90 %, was achieved with SiH4 and N2O over a wide range of aspect ratios. The average breakdown field obtained for the SiH4/N2O oxides is approximately 13 MV/cm, which is greater than values measured for oxides formed by conventional dry thermal process. Oxides deposited using TEOS typically have an average breakdown field of about 8 MV/cm. We conclude that the SiH4/N2O oxide process for the deposition of SiO2 films in a RTCVD reactor is a very promising candidate for sidewall spacer formation in advanced device applications.



Hide All
1. Cheng, L-Y., McVittie, J. P. and Saraswat, K. C., Appl. Phys. Lett., 58 (19), 2147 (1991).
2. Cale, T. S., Raupp, G. B. and Gandy, T. H., J. Appl. Phys., 68, 3645 (1990).
3. Cooke, M. J. and Harris, G., J. Vac. Sci. Technol. A, 7, 3217 (1989).
4. Chang, C. P., Pai, C. S. and Hsieh, J. J., J. Appl. Phys., 67, 2119 (1990).
5. Selamoglu, N., Mucha, J. A., Ibbotson, D. E. and Flamm, D. L., J. Vac. Sci. Technol. B, 7, 1345 (1989).
6. Adams, A. C. and Capio, C. D., J. Electrochem. Soc. 126 (6), 1042–46 (1977).
7. Bayoumi, A. M., Silvestre, C. L., Kuehn, R. T. and Hauser, J. R., “Design and Operation of a Cluster-Tool-Based Rapid Thermal Processing Module”, Tenth Biennial University/Government/Industry Microelectronics Symposium, p. 203 (May 1993).
8. Ren, X., Oztiirk, M. C. and Wortman, J. J., J. Vac. Sci. Technol. B 10 (3), 1081–85 (1992).
9. Xu, X-L., Kuehn, R. T., Wortman, J. J. and Oztfirk, M. C., Appl. Phys. Lett., 60 (24), 3063 (1992).
10. Becker, F. S., Pawlik, D., Anzinger, H. and Spitzer, A., J. Vac. Sci. Technol. B, 5 (6), 1555 (1987).
11. Becker, F. S., Pawlik, D., Schafer, H. and Staudigl, G., J. Vac. Sci. Technol. B, 4 (3), 732 (1986).
12. Monkowski, J. R., Logan, M. A., Freeman, D. W., Brown, G. A. and Ruggles, G. A., Proceedings of the Tenth International Conference on Chemical Vapor Deposition, p. 508 (1987).
13. Levin, R. M. and Evans-Lutterodt, K., Materials Letter 1 (1), 2932 (1982).
14. Wulu, H. C., Saraswat, K. C., and McVittie, J. P., J. Electrochem. Soc. 138 (6), 1831–40 (1991).
15. Cheng, L-Y., Rey, J. C., McVittie, J. P. and Saraswat, K. C., Proceedings of the Seventh International IEEE VLSI Multilevel Interconnection Conference (N. Y., 1990), p. 404.


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed