Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-25T15:49:17.830Z Has data issue: false hasContentIssue false

Compared Nitrogen Implantations of Various Alloyed Steels

Published online by Cambridge University Press:  25 February 2011

N. Moncoffre
Affiliation:
Institut de Physique Nucléaire land IN2P31, Université Lyon-1 (France)
H. Jaffrezic
Affiliation:
Institut de Physique Nucléaire land IN2P31, Université Lyon-1 (France)
G. Marest
Affiliation:
Institut de Physique Nucléaire land IN2P31, Université Lyon-1 (France)
J. Tousset
Affiliation:
Institut de Physique Nucléaire land IN2P31, Université Lyon-1 (France)
F. C. Zawislak
Affiliation:
Institut de Physique Nucléaire land IN2P31, Université Lyon-1 (France)
S. Faveulle
Affiliation:
CNRS/UA-447, Ecole Centrale de Lyon (France)
J. Brissot
Affiliation:
Science et Surface, Charbonnières (France)
Get access

Abstract

Nitrogen implantations in pure iron and various stE-els are investigated using nuclear reaction analysis, Conversion Electron M6ssbauer Spectroscopy and Grazing angle X-ray Diffraction. The present work sums up all the significant results although it does not constitue a systematic study. It describes the influence of the chemical composition and the structure effect of the matrix as well as those of the implantation time. The N-martensite, ε-nitride and ε-carbonitride phases are principally identified. The fraction of iron bound with nitrogen is evaluated in the different steels. The strong influence of the small chromium amounts inside the matrix upon the nitride formation is underlined. A preferential orientation of these phases is shown. SIMS experiments are presented in particular to determine the carbon distribution in the first surface layers.

Type
Research Article
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Singer, I.L., Appl. of Surf. Science 18 28 (1984)Google Scholar
2. Santos, C.A. Dos, Behar, M. and Baumvol, I..J.R., J. of Phys. D: Appl. Phys. 17 551 (1984)Google Scholar
3. Hohmuth, K., Richter, E., Rauschenbach, B. and Blochwitz, C., Mat. Sci. and Eng. 69 191 (1985)Google Scholar
4. Hubler, G.K. and Smidt, F.A., Nucl. Instr. Meth. in Phys. Res. B 7/8 151 (1985)Google Scholar
5. Singer, I.L., Vacuum 34 (10–11) 853 (1984)Google Scholar
6. Rauschenbach, B., Kolitsch, A. and Hohmuth, K., Phys. Stat. Sol. (a) 80 471 (1983)Google Scholar
7. Moncoffre, N., Marest, G., Hiadsi, S. and Tousset, J., Nucl. Instr. Meth. in Phys. Res. B 15 620 (1986)Google Scholar
8. Principi, G., Russo, S. Lo and Tosello, S., in “Industrial Applications of the Miissbauer Effect”, Eds Long, G.J. and Stevens, J.G. (Plenum Press, 1987) 267 Google Scholar
9. Fayeulle, S., Doct. bs-Sciences Physiques Thesis, Lyon (1987)Google Scholar
10. Fayeulle, S., Wear 107(1) 61 (1986)Google Scholar
11. Santos, C.A. Dos, de Barros, B.A.S. Jr., de Souza, J.P. and Baumvol, I.J.R., Appl. Phys. Lett. 41 237 (1982)Google Scholar
12. Moncoffre, N., Brunel, M., Deydier, P. and Tousset, J., Surf. and Interf. Analysis 9 139 (1986)Google Scholar
13. Firrao, D., Rosso, M., Principi, G. and Frattini, R., J. Mat. Sci., 17 1773 (1982)Google Scholar
14. Moncoffre, N., Hollinger, G., Jaffrezic, H., Marest, G. and Tousset, J., Nucl. Instr. Meth. in Phys. Res. B 7/8 177 (1985)Google Scholar
15. Moncoffre, N., Thesis, Lyon, (1986)Google Scholar
16. Moncoffre, N., Mat. Sci. and Eng. 90 99 (1987)Google Scholar