Skip to main content Accessibility help

Comparative Study of Simultaneous Implant Activation and Borophosphosilicate Glass (BPSG) Reflow During Rapid Thermal Processing (RTP) and Furnace Annealing on Complex Topographies

  • Randhir P. S. Thakur (a1), Valerie Ward (a1) and Annette Martin (a1)


Borophosphosilicate glass (BPSG) is an essential insulating material used to modify thecomplex topography of highly dense, next generation dynamic random access memory (DRAM)devices. The shallow junctions in 16 and 64 Meg DRAMs can only be maintained by severely restricting the time, temperature, and atmosphere of all thermal process steps following the junction implant.

In this paper we present the results of rapid thermal process (RTP) assisted reflow of BPSG over complex topographies and compare the results of RTP to furnace reflow in both dry and wet ambients. We also compare the out-diffusion of boron and phosphorous from BPSG films during the RTP and furnace reflow. We found an optimum RTP cycle that completely removes voids in the vicinity of overhang geometries and provides sufficient activation of the underlying dopants (as compared to a furnace reflow and activation cycle). In this study we used the results of boron and phosphorous profile redistribution, underlying dopant activation, and the amount of reflow to compare RTP and furnace processing techniques.



Hide All
1. Kern, W. and Schnable, G. L., RCA Rev., 43, 423 (1982).
2. Kern, W. and Smeltzer, R. K., Solid State Technol., 28 (6), 171 (1985).
3. Levy, R. A. and Nassau, K., J. Electrochem. Soc., 133 (7), 1417 (1986).
4. Levy, R. A. and Nassau, K., Solid State Technol., 133, 123 (1986).
5. Foster, T., Hoeye, G. and Goldman, J., J. Electrochem. Soc., 132 (2), 505 (1985).
6. Levy, R. A., Gallagher, P. K. and Schrey, F., J. Electrochem. Soc., 134, 430 (1987).
7. Hurley, K. H., Solid State Technol., 104 (1987).
8. Schnable, G. L., Fisher, A. W. and Shaw, J. M., J. Electrochem. Soc., 137 (2), 3973 (1990).
9. O'Meara, D. L. and Hochberg, A. K., Mat. Res. Soc. Symp. Proc., 204, 533 (1991).
10. Mayumi, S. and Ueda, S., Jpn. J. Appl. Phys., 29, 645 (1990).
11. Madden, M., Cox, J. N., Fruechting, B., and Matteau, J., Solid State Technol., 32 (8), 53 (1989).
12. Singh, R., J. Appl. Phys., 63, R59 (1988).
13. Thakur, R. P. S., Singh, R., Nelson, A. J., Ullal, H. S., Chaudhuri, J. and Gondhalekar, V., J. Appl. Phys., 69 (1), 367 (1991).
14. Kern, W., Kurylo, W. A. and Tino, C. J., RCA Rev., 46, 117 (1985).
15. Becker, F. S., Pawlik, D., Schafer, H. and Standigl, G., J. Vac. Sci. Technol. B, 4 (3), 732 (1986).
16. Wilson, S. R., Paulson, W. M., and Gregory, R. B.. Solid State Technol., 28 (6), 185 (1985).
17. Jensen, K. and Kern, W. in Vossen, J. L. and Kern, W. (eds.), Thin Film Processes II. Chapter III, Academic Press, New York, 283 (1991).
18. Reif, R. and Kern, W., in Vossen, J. L. and Kem, W. (eds.), Thin Film Processes II. Chapter IV, Academic Press, New York, 525 (1991).
19. Kern, W. and Hartman, J., Thin Solid Films, 206, 64 (1991).
20. Thakur, R. P. S., Gonzalez, F., Hawthorne, R., Ward, V., and Jeng, N. (unpublished).
21. Williams, D. S. and Dein, E. A., J. Electrochem. Soc., 134, 657 (1987).


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed