Skip to main content Accessibility help

A Comparative Study of Gas Chemistry in Methane/Hydrogen and Acetylene/Hydrogen Gas Mixtures During Hot-Filament Vapor Deposition of Diamond

  • Ching-Hsong Wu (a1), M. A. Tamor (a1), T. J. Potter (a1) and E. W. Kaiser (a1)


The technology of low pressure chemical vapor deposition (CVD) of polycrystalline diamond films has advanced substantially in recent years [1–3]. However, fundamental understanding of the chemistry and physics occurring in this CVD process is still lagging. Although the key role that H atoms play in diamond CVD has long been recognized [4–6], the identity of the gaseous diamond precursors and the mechanism by which diamond is formed are still unclear. Only recently has interest in these critical issues grown. For example, theoretical predictions and quantum mechanical calculations of gas-solid reaction paths involving CH3 and CH3 + [7] or C2H2 [8] have been reported, and the thermodynamic analyses of diamond CVD processes have been examined [9,10]. In addition, experimental results and chemical models [11–16] have been presented in attempts to support specific species as the essential precursors of diamond growth. Nevertheless, no consensus has been reached concerning the growth species and mechanism in CVD diamond processes.



Hide All
1. Angus, J. C. and Hayman, C. C., Science 241, 913 (1988).
2. Spitsyn, B. V., Bouilov, L. L., and Derjaguin, B. V., J. Cryst. Growth 52, 219 (1981).
3. Matsumoto, S., Sato, Y., Kamo, M., and Setaka, N., Jpn. J. Appl. Phys. 21, L183 (1982)
4. Lander, J. J. and Morrison, J, Surf. Sci. 2, 553 (1964); J. Chem. Phys. 34 1403 (1963).
5. Angus, J. C., Will, H. A., and Stanko, W. S., J. Appl. Phys. 39, (1968) 2915; S. P. Chauham, J. C. Angus, N. C. Gardner, J. Appl. Phys. 47, 4746 (1976); J. Vac. Sci. Technol. 11, 423 (1974).
6. Fedoseev, D. V., Varnin, V. P., and Derjaguin, B. V., Russ. Chem. Rev. 53, 435 (1984).
7. Tsuda, M., Nakajima, M., and Oikawa, S., J. Am. Chem. Soc. 108, 5780 (1986); Jpn. J. Appl. Phys. 26, L527 (1987).
8. Frenklach, M. and Spear, K. E., J. Mater. Res. 3, 133 (1988); D. Huang M. Frenklach, and M. Maroncelli, J. Phys. Chem. 92, 6379 (1988).
9. Piekarczyk, W., J. Cryst Growth, 82, 367 (1987); W. Piekarczyk, R. Messier, R. Roy, and C. Engdahl, submitted to J. Cryst Growth.
10. Summer, M., Mui, K., and Smith, F. W., Solid State Commun. 69, 775 (1989)
11. Aikyo, H. and Kondo, K., Jpn. J. Appl. Phys., 28, L1931 (1989).
12. Celii, F. G., Pehrsson, P. E., Wang, H. T., and Butler, J. E., Appl. Phys. Lett. 52, 2043 (1988); F. G. Celii and J. E. Butler, Appl. Phys. Lett. 54, 1031 (1989).
13. Harris, S. J., J. Appl. Phys. 65, 3044 (1989); S. J. Harris, A. M. Weiner, and T. A. Perry, Appl. Phys. Lett. 53 1605 (1988).
14. Mucha, J. A., Flamm, D. L., and Ibbotson, D. E., J. Appl. Phys. 65, 3448 (1989).
15. Matsui, Y., Yuuki, A., Sahara, M., and Hirose, Y., Jpn. J. Appl. Phys. 28, 1718 (1989).
16. Frenklach, M., J. Appl. Phys. 65, 5142 (1989).
17. Wu, C. H., Tamor, M. A., Potter, T. J., and Kaiser, E. W. in Technology UVpdate on Diamond Films, eds. Chang, R. P. H., Nelson, D., and Hiraki, A., (Mater. Res. Soc. Proc., Pittsburgh, PA 1989) p 3742.
18. Kaiser, E. W., Rothschild, W. G., Lavoie, G. A., Combust. Sci. Technol. 33, 123 (1983); E. W. Kaiser, W. G. Rothschild, G. A. Lavoie, Combust. Sci. Technol., 41, 271 (1984).
19. Chase, M. W. Jr, Davies, C. A., Douney, J. R. Jr, Furip, D. A., McDonald, R. A., and Syverad, A. N., JANAF Thermochemical Table, 3rd ed. (American Chemical Society, Washington, DC, 1986).
20. Hirschfelder, J. O., Curtiss, C. F., and Bird, R. B., Molecular Theory of Gases and Liquid, (John Wiley & Sons, New York, 1967).


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed