Skip to main content Accessibility help
×
Home

Comparative Optical Studies of Chemically Synthesized Silicon Nanocrystals

  • Gildardo R. Delgado (a1) (a2), Howard W.H. Lee (a1), Susan M. Kauzlarich (a3) and Richard A. Bley (a3)

Abstract

We studied the optical and electronic properties of silicon nanocrystals derived from two distinct fabrication procedures. One technique uses a controlled chemical reaction. In the other case, silicon nanocrystals are produced by ultrasonic fracturing of porous silicon layers. We report on the photoluminescence, photoluminescence excitation, and absorption spectroscopy of various size distributions derived from these techniques. We compare the different optical properties of silicon nanocrystals made this way and contrast them with that observed in porous silicon. Our results emphasize the dominant role of surface states in these systems as manifested by the different surface passivation layers present in these different fabrication techniques. Experimental absorption measurements are compared to theoretical calculations with good agreement. Our results provide compelling evidence for quantum confinement in both types of Si nanocrystals. Our results also indicate that the blue emission from very small Si nanocrystals corresponds to the bandedge emission, while the red emission arises from traps.

Copyright

References

Hide All
1. See, for example, Mat. Res. Soc. Symp. Proc. 298, (1993) or J. Lumin., 57, (1993).
2.Porous Silicon, Feng, Z.C. and Tsu, R. eds., (World Scientific Publishing Company, River Edge, New Jersey, 1994).
3.Porous Silicon Science and Technology Vial, J.C. and Derrien, J. eds., (Springer-Verlag, New York, 1995).
4.Koch, F., Petrova-Koch, V., and Muschik, T., J. of Lumin., 57, 271 (1993).
5.Wu, J.J., Flagan, R.C., J. Appl. Phys., 61, 1365 (1987).
6.Hayashi, S., Tanimoto, S., Yamamoto, K., J. Appl. Phys., 68, 5300 (1990).
7.Okada, R., Ijima, S., Appl. Phys. Lett., 58, 1662 (1991).
8.Ijima, S., Jpn. J. Appl. Phys., 26, 357 (1987).
9.Saito, Y., J. Cryst. Growth, 47, 61 (1979).
10.Heath, J.R., Science, 258, 1131 (1992).
11.Heinrich, J.L., Curtis, C.L., Credo, G.M., Kavanagh, K.L., Sailor, M.J., Science, 255, 66 (1992).
12.Littau, K.A., Szajowshki, P.J., Muller, A.J., Kortan, A.R., Brus, L.E., J. Phys. Chem. 97, 1224 (1993).
13.Bley, R.A. and Kauzlarich, S.M., J. Am. Chem. Soc, in press, (1996).
14.Delgado, G.R. and Lee, H.W.H., Phys. Rev. Lett, (submitted).
15.Dellerue, C., Allan, G., Lannoo, M., Phys. Rev. B. 48, 11024 (1993).
16.Wang, L.W., Zunger, A., Phys. Rev. Lett. 73, 1039 (1994).
17. See, for example, Griscom, D.L., J. Ceram. Soc. Jpn. 99, 923 (1991).
18.Dellerue, C., Allan, G., Martin, E. and Lannoo, M., Porous Silicon Science and Technology, Vial, J.C. and Derrien, J. eds., (Springer-Verlag, New York, 1995), page 91.

Related content

Powered by UNSILO

Comparative Optical Studies of Chemically Synthesized Silicon Nanocrystals

  • Gildardo R. Delgado (a1) (a2), Howard W.H. Lee (a1), Susan M. Kauzlarich (a3) and Richard A. Bley (a3)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.