Hostname: page-component-8448b6f56d-tj2md Total loading time: 0 Render date: 2024-04-23T17:54:10.983Z Has data issue: false hasContentIssue false

Comparative Fluctuation Microscopy Study of Medium-Range Order in Hydrogenated Amorphous Silicon Deposited by Various Methods

Published online by Cambridge University Press:  17 March 2011

P. M. Voyles
Affiliation:
Dept. of Physics, Univ. of Illinois at Urbana-Champaign, 1110 W. Green St, Urbana, IL 61801 NEC Research Institute, 4 Independence Way, Princeton, NJ 08540
M. M. J. Treacy
Affiliation:
NEC Research Institute, 4 Independence Way, Princeton, NJ 08540
H-C. Jin
Affiliation:
Dept. of Materials Science and Engineering and Coordinated Science Laboratory, Univ. of Illinois at Urbana-Champaign, 1110 W. Springfield, Urbana, IL 61801
J. R. Abelson
Affiliation:
Dept. of Materials Science and Engineering and Coordinated Science Laboratory, Univ. of Illinois at Urbana-Champaign, 1110 W. Springfield, Urbana, IL 61801
J. M. Gibson
Affiliation:
Materials Science Division, Argonne National Laboratory, 9700 Cass Ave, Argonne, IL 60439
J. Yang
Affiliation:
United Solar Systems Corp., 1110 West Maple Road, Troy, MI 48084
S. Guha
Affiliation:
United Solar Systems Corp., 1110 West Maple Road, Troy, MI 48084
R. S. Crandall
Affiliation:
National Renewable Energy Laboratory, Golden, CO 80401
Get access

Abstract

We have characterized by fluctuation electron microscopy the medium-range order of hydrogenated amorphous silicon thin films deposited by a variety of methods. Films were deposited by reactive magnetron sputtering, hot-wire chemical vapor deposition, and plasma enhanced chemical vapor deposition with and without H2 dilution of the SiH4 precursor gas. All of the films show the signature of the paracrystalline structure typical of amorphous Si. There are small variations in the degree of medium-range order with deposition method and H content. The PECVD film grown with high H2 dilution contains Si crystals ∼5 nm in diameter at a density of ∼109 cm−2. The amorphous matrix surrounding these crystals shows no difference in mediumrange order from the standard PECVD film. This supports explanations of the resistance of the H-dilution material to light-induced degradation that depend only on the presence of crystalline grains without modifications of the amorphous matrix.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Gibson, J. M. and Treacy, M. M. J., Phys. Rev. Lett. 78, 1074 (1997).Google Scholar
2. Gibson, J. M., Treacy, M. M. J., Voyles, P. M., Jin, H-C., and Abelson, J. R., Appl. Phys. Lett. 73, 3093 (1998).Google Scholar
3. Treacy, M. M. J., Gibson, J. M., and Keblinski, P. J., J. Non-Cryst. Solids 231, 99 (1998).Google Scholar
4. Gibson, J. M., Treacy, M. M. J., and Voyles, P. M., to be published in Ultramicroscopy.Google Scholar
5. Voyles, P. M., Gibson, J. M., and Treacy, M. M. J., to be published in J. Electron Microscopy.Google Scholar
6. Pinarbasi, M., Maley, N., Myers, A., and Abelson, J. R., Thin Solid Films 171, 217 (1989).Google Scholar
7. Voyles, P. M., Treacy, M. M. J., Gibson, J. M., Jin, H-C., and Abelson, J. R., in Advances in Materials Problem Solving with the Electron Microscope, Allen, C. W., Bentley, J., Dahmen, U., and Petrov, I., eds., Mat. Res. Soc. Symp. Proc. 589, to be published.Google Scholar
8.For historic reasons, electron microscopists define κ = 1/λ instead of κ=2π/λ, so the units here are κ 2π smaller than those used in x-ray diffraction.Google Scholar
9. Laaziri, K., Kycia, S, Roorda, S., Chicoine, M., Robertson, J. L., Wang, J., and Moss, S. C., Phys. Rev. Lett. 82, 3460 (1999); Phys. Rev. B 60, 13520 (1999).Google Scholar
10. Treacy, M. M. J., Voyles, P. M., and Gibson, J. M., J. Non-Cryst. Solids 266, 150 (2000).Google Scholar
11. Gibson, J. M., Cheng, J-Y., Voyles, P. M., Treacy, M. M. J., and Jacobson, D. C., in Microstructural Processes in Irradiated Materials, Zinkle, S. J., Lucas, G., Ewing, R., and Williams, J., eds., Mat Res. Soc. Symp. Proc. 540, 1999, p. 27.Google Scholar
12. Tsu, D. V., Chao, B. S., Ovshinsky, S. R., Guha, S., and Yang, J., Appl. Phys. Lett. 71, 1317 (1997).Google Scholar
13. Mahan, A. H., Beyer, W., Williamson, D. L., Yang, J., and Guha, S., to be published in J. Non-Cryst. Solids.Google Scholar
14. Guha, S., Narasimhan, K. L., and Pietruszko, S. M., J. Appl. Phys. 52, 859 (1981); R. Platz, S. Wagner, C. Hof, A. Shah, S. Weider, and B. Rech, J. Appl. Phys. 84, 3949 (1998).Google Scholar
15. Koh, J., Lee, Y., Fujiwara, H., Wronski, C. R., and Collins, R. W., Appl. Phys. Lett. 73, 1526 (1998).Google Scholar
16. Koh, J., Fujiwara, H., Collins, R. W., Lee, Y., and Wronski, C. R., J. Non-Cryst. Solids 227–230, 73 (1998).Google Scholar
17. Guha, S., Yang, J., Williamson, D. L., Lubianiker, Y., Cohen, J. D., and Mahan, A. H., Appl. Phys. Lett. 74, 1860 (1999).Google Scholar
18. Lubianiker, Y., Cohen, J. D., Jin, H-C., and Abelson, J. R., Phys. Rev. B 60, 4434 (1999).Google Scholar
19. Kamei, T., Stradins, P., and Matsuda, A., Appl. Phys. Lett. 74, 1707 (1999).Google Scholar