Hostname: page-component-7bb8b95d7b-lvwk9 Total loading time: 0 Render date: 2024-09-24T10:32:21.945Z Has data issue: false hasContentIssue false

Compact All Pass Transmission Filter using Photonic Crystal Slabs

Published online by Cambridge University Press:  15 March 2011

Wonjoo Suh
Affiliation:
Department of Electrical Engineering, Stanford University, Stanford, CA 94305
Shanhui Fan
Affiliation:
Department of Electrical Engineering, Stanford University, Stanford, CA 94305
Get access

Abstract

We show that both the coupled photonic crystal slab and the single photonic crystal slab structure can function as an optical all-pass transmission filter for normally incident light. The filter function is synthesized by designing the spectral properties of guided resonance in the slab. We expect this compact device to be useful for optical communication systems.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Lenz, G. and Madsen, C. K., J. Lightwave Technol. 17, 1248 (1999).Google Scholar
[2] Madsen, C.K., Walker, J.A., Ford, J.E., Goossen, K.W., Nielsen, T.N. and Lenz, G., IEEE Photon. Techno. Lett. 12, 651 (2000).Google Scholar
[3] Kanskar, M., Paddon, P., Pacradouni, V., Morin, R., Busch, A., Young, J. F., Johnson, S. R., Mackenzie, J., and Tiedje, T., Appl. Phys. Lett. 70, 1438 (1997)Google Scholar
[4] Astratov, V. N., Culshaw, I. S., Stevenson, R. M., Whittaker, D. M., Skolnick, M. S., Krauss, T. F., and Rue, R. M. De La, J. Lightwave Technol. 17, 2050 (1999).Google Scholar
[5] Fan, S. and Joannopoulos, J. D., Phys. Rev. B, 65, 235112 (2002).Google Scholar
[6] Boroditskky, M., Vrijen, R., Krauss, T. F., Coccioli, R., Bhat, R., and Yablonovitch, E., J. Lightwave Technol. 17, 2096 (1999).Google Scholar
[7] Erchak, A., Ripin, D. J., Fan, S., Rakich, P., Joannopoulos, J. D., Ippen, E. P., Petrich, G. S. and Kolodziejski, L. A., Appl. Phys. Lett. 78, 563 (2001).Google Scholar
[8] Ryu, H. Y., Lee, Y. H., Sellin, R. L., and Bimberg, D., Appl. Phys. Lett. 79, 3573 (2001).Google Scholar
[9] Meier, M., Mekis, A., Dodabalapur, A., Timko, A. A., Slusher, R. E. and Joannopoulos, J. D., Appl. Phys. Lett. 74, 7 (1999).Google Scholar
[10] Noda, S., Yokoyama, M., Imada, M., Chutinan, A., and Mochizuki, M., Science, 293, 1123 (2000).Google Scholar
[11] Wang, S.S. and Magnusson, R., Opt. Lett. 19, 919 (1994).Google Scholar
[12] Kunz, K. S. and Luebbers, R. J., The Finite-Difference Time-Domain Methods for Electromagnetics (CRC Press, Boca Raton, FL, 1993); A. Taflove and S. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Methods (Artech House, Boston, 2000).Google Scholar
[13] Suh, W. and Fan, S., Opt. Lett. 28, 1763, (2003)Google Scholar
[14] Palik, Edward D., Handbook of optical constants of Solids (Academic Press, San Diego, Calif., 1985).Google Scholar
[15] Wang, Z., Fan, S., Phys. Rev. E, 68, 066616, (2003)Google Scholar