Hostname: page-component-77c89778f8-fv566 Total loading time: 0 Render date: 2024-07-19T02:25:44.886Z Has data issue: false hasContentIssue false

Combustion Synthesis of Sr-Substituted LaCo0.4Fe0.6O3 Powders

Published online by Cambridge University Press:  25 February 2011

J. J. Kingsley
Affiliation:
Pacific Northwest Laboratory, Richland, W A 99352
L. A. Chick
Affiliation:
Pacific Northwest Laboratory, Richland, W A 99352
G. W. Coffey
Affiliation:
Pacific Northwest Laboratory, Richland, W A 99352
D. E. McCready
Affiliation:
Pacific Northwest Laboratory, Richland, W A 99352
L. R. Pederson
Affiliation:
Pacific Northwest Laboratory, Richland, W A 99352
Get access

Abstract

Sr-substituted perovskite LaCo0.4Fe0.6O3 is known to have excellent mixed ionic and electronic conductivity and increased O2 sorption characteristics. These perovskites are usually prepared by lengthy solid-state reactions of the component oxides at temperatures near 1150°C, and often produce inhomogeneous, multi-phase powders. Presently, it has been prepared by the calcination of combustion-derived fine mixed oxides at 850°C in 6 hrs. Combustion reactions are carried out using precursor solutions containing the corresponding metal nitrates (oxidizers) and glycine (fuel) at 250°C. The metal oxides produced by this process and subsequent calcination were characterized by XRD, TEM and BET surface area analysis.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Tuller, H. L., Nonstoichiometric Oxides, Chapt. 6 (Academie Press, New York 1981), p. 271.Google Scholar
2. Teraoka, Y., Zhang, H. M., Furukawa, S. and Yamazoe, N., Chem. Lett. 1743 (1985).CrossRefGoogle Scholar
3. Teraoka, Y., Nobunaga, T. and Yamazoe, N., Chem. Lett. 503 (1988).Google Scholar
4. Yamamoto, O., Takeda, Y., Kanno, R. and Noda, M., Solid State Ionics, 22, 241 (1987).Google Scholar
5. Takeda, Y., Kanno, R., Noda, M., Tomida, Y. and Yamamoto, O., J. Electrochem. Soc. 134, 2656 (1987).Google Scholar
6. Matsumoto, Y., Yamada, S., Nishida, T. and Sato, E., J. Electrochem. Soc. 127(11) 2360 (1980).Google Scholar
7. Zhang, H. M., Shimizu, Y., Teraoka, Y., Miura, N. and Yamazoe, N., Journal of Catalysis, 121, 432 (1990).Google Scholar
8. Teraoka, Y., Zhang, H. M., Okamoto, K. and Yamazoe, N., Mat. Res. Bull. 23, 51 (1988).Google Scholar
9. Pederson, L. R., Maupin, G. D., Weber, W. J., McReady, D. J. and Stephens, R. W., Materials Letters, 10(9,10), 437443 (1991).Google Scholar
10. Chick, L. A., Pederson, L. R., Maupin, G. D., Bates, J. L., Thomas, L. E. and Exarhos, G. J., Materials Letters, 10(1,2), 612 (1990).CrossRefGoogle Scholar
11. Kingsley, J. J. and Patii, K. C., Materials Letters, 6(11,12), 427432 (1988).Google Scholar
12. Kingsley, J. J. and Patii, K. C., J. Mater. Sci. 25, 13051312 (1990).Google Scholar
13. Sundar Manoharan, S., Kumar, N. R. S. and Patii, K. C., Mat. Res. Bull., 25, 731738, (1990).Google Scholar
14. Kourtakis, K., Robbins, M. and Gallagher, P. K., J. Solid State Chem., 84, 8892 (1990).Google Scholar
15. Powder Diffraction File, no: 40–224, Joint Committee on Diffraction Standards.Google Scholar