Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-25T14:20:13.408Z Has data issue: false hasContentIssue false

Combinatorial Thin Film Synthesis of NiMnAl Magnetic Shape Memory Alloys Using MBE Technique

Published online by Cambridge University Press:  01 February 2011

R. Hassdorf
Affiliation:
Center of Advanced European Studies and Research (caesar), D-53175 Bonn, Germany
J. Feydt
Affiliation:
Center of Advanced European Studies and Research (caesar), D-53175 Bonn, Germany
S. Thienhaus
Affiliation:
Center of Advanced European Studies and Research (caesar), D-53175 Bonn, Germany
R. Borowski
Affiliation:
Center of Advanced European Studies and Research (caesar), D-53175 Bonn, Germany
M. Boese
Affiliation:
Universität Bonn, Institut für Anorganische Chemie, D-53117 Bonn, Germany
T. Walther
Affiliation:
Center of Advanced European Studies and Research (caesar), D-53175 Bonn, Germany
M. Moske
Affiliation:
Center of Advanced European Studies and Research (caesar), D-53175 Bonn, Germany
Get access

Abstract

Composition spreads close to the Heusler alloy Ni2MnAl were grown onto 4-inch wafer substrates using molecular beam epitaxy. Compositional variations of up to 10 at.% relative to each constituent enable a direct comparison of the chemical-structural relationship with respect to martensitic transformation and to magnetic ordering as well as an efficient identification of the emerging phase stability regions. In this study, we set the primary focus on the structural aspects of the transformation behavior as observed by X-ray microdiffraction in combination with a specially designed heating stage. Notably, cross-sectional HRTEM imaging of the respective composition areas reveals a laminated two-phase martensitic structure inside the single grains, identified as a sequence of 2M and 14M variants. Stress relief upon transformation as observed by mechanical stress measurements reaches to 400 MPa depending on the composition. Magnetization measurements so far indicate field-induced ordering to occur at low temperatures, here, below 50 K which is assumed to be closely related to a high degree of structural disorder on the Mn-Al sublattice. Single-crystal thin films were realized by means of an epitaxial relationship to MgO (001).

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. For a review, see, e.g., O'Handley, R.C. and Allen, S.M., in Encyclopedia of Smart Materials, edited by Schwartz, M. (Wiley, New York, 2002).Google Scholar
2. James, R.D. and Wuttig, M., Phil. Mag. A 77, 1273 (1998).10.1080/01418619808214252Google Scholar
3. Kakeshita, T., Takeuchi, T., Tsujiguchi, T.M., Saburi, T., Oshima, R., and Muto, S., Appl. Phys. Lett. 77, 1502 (2000).10.1063/1.1290694Google Scholar
4. Takeuchi, I., Famodu, O.O., Read, J.C., Aronova, M.A., Chang, K.S., Craciunescu, C., Lofland, S.E., Wuttig, M., Wellstood, F.C., Knauss, L., and Orozco, A., Nature Mater. 2, 180 (2003).10.1038/nmat829Google Scholar
5. Kainuma, R., Gejima, F., Sutou, Y., Ohnuma, I., and Ishida, K., Mater. Trans., JIM 41, 943 (2000).10.2320/matertrans1989.41.943Google Scholar
6. Craciunescu, C., Kishi, Y., Lograsso, T.A., and Wuttig, M., Scripta Mater. 47, 258 (2002).10.1016/S1359-6462(02)00148-3Google Scholar
7. Oikawa, K., Ota, T., Gejima, F., Ohmori, T., Kainuma, R., and Ishida, K., Mater. Trans., JIM 42, 2472 (2001).10.2320/matertrans.42.2472Google Scholar
8. Moske, M. and Samwer, K., Mater. Res. Soc. Symp. Proc. 356, 27 (1995).10.1557/PROC-356-27Google Scholar
9. Ohring, M., The Materials Science of Thin Films (Academic Press, London, 1992) pp. 416418.Google Scholar
10. Wuttig, M., Liu, L., Tsuchiya, K., and James, R.D., J. Appl. Phys. 87, 4707 (2000).10.1063/1.373135Google Scholar
11. Wassermann, E.F., Kästner, J., Acet, M., and Entel, P., Proc. Int. Conf. Solid-Solid Phase Transformations '99 (JIMIC-3), 807 (1999).Google Scholar
12. Hassdorf, R., Feydt, J., Pascal, R., Thienhaus, S., Boese, M., Sterzl, T., Winzek, B., and Moske, M., Mater. Trans. 43, 933 (2002).10.2320/matertrans.43.933Google Scholar
13. Morito, S. and Otsuka, K., Mater. Sci. Eng. A 208, 47 (1996).10.1016/0921-5093(95)10051-2Google Scholar
14. Kainuma, R., Nakano, H., and Ishida, K., Metall. Mater. Trans. A 27, 4153 (1996).10.1007/BF02595663Google Scholar
15. Acet, M., Duman, E., Wassermann, E.F., Mañosa, L., and Planes, A., J. Appl. Phys. 92, 3867 (2002).10.1063/1.1504498Google Scholar
16. Mañosa, L., Planes, A., Acet, M., Duman, E., and Wassermann, E.F., J. Appl. Phys. 93, 8498 (2003).10.1063/1.1555977Google Scholar
17. Chambers, S.A., Surf. Sci. Rep. 39, 105 (2000).10.1016/S0167-5729(00)00005-4Google Scholar
18. Dong, X.Y., Dong, J.W., Xie, J.Q., Shih, T.C., McKernan, S., Leighton, C., and Palm-strøm, C.J., J. Cryst. Growth 254, 384 (2003).10.1016/S0022-0248(03)01172-2Google Scholar