Hostname: page-component-8448b6f56d-mp689 Total loading time: 0 Render date: 2024-04-25T04:31:41.326Z Has data issue: false hasContentIssue false

Combinatorial Strategies for Thin Organic Films -Polythiophene via Surface Polymerization by Ion Assisted Deposition

Published online by Cambridge University Press:  01 February 2011

Luke Hanley
Affiliation:
Department of Chemistry, University of Illinois at Chicago, 845 W. Taylor St., 4500 SES (M/C 111) Chicago, IL 60607–7061, U.S.A.
Sanja Tepavcevic
Affiliation:
Department of Chemistry, University of Illinois at Chicago, 845 W. Taylor St., 4500 SES (M/C 111) Chicago, IL 60607–7061, U.S.A.
Yongsoo Choi
Affiliation:
Department of Chemistry, University of Illinois at Chicago, 845 W. Taylor St., 4500 SES (M/C 111) Chicago, IL 60607–7061, U.S.A.
Get access

Abstract

Combinatorial strategies are applied to surface polymerization by ion assisted deposition (SPIAD) for the production of polythiophene films. Thiophene ion energy in the range of 25–200 eV and ion to α-terthiophene neutral ratio are varied to tune the extent of surface polymerization and film photoluminescence. SPIAD polythiophene films are grown by both mass-selected and non-mass-selected ions, while x-ray photoelectron spectroscopy and surface mass spectrometry are applied to determine film chemistry and the extent of polymerization. This work demonstrates that ion kinetic energy and ion to neutral ratio can be varied over a wide range in SPIAD to select films with useful optical or electronic properties. The essentially combinatorial approach of SPIAD can be dramatically extended by use of new ions and/or neutral species.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Fichou, D. (Ed.) Handbook of Oligo- and Polythiophenes, Weinheim, Wiley-VCH, 1999.Google Scholar
2. Moliton, A., in: Skotheim, T.A., Elsenbaumer, R.L., Reynolds, J.R. (Eds.), Handbook of Conducting Polymers, New York, 1998, pp. 589.Google Scholar
3. Usui, H., Thin Solid Films 365, 22 (2000).Google Scholar
4. Hanley, L., Sinnott, S. B., Surf. Sci. 500, 500 (2002).Google Scholar
5. Hanley, L., Choi, Y., Fuoco, E. R., Akin, F. A., Wijesundara, M. B. J., Li, M., Tikhonov, A., Schlossman, M., Nucl. Instr. Meth. Phys. Res. B 203C, 116 (2003).Google Scholar
6. Jandeleit, B., Schaefer, D. J., Powers, T. S., Turner, H. W., Weinberg, W. H., Angew. Chem. Int. Ed. 38, 2494 (1999).Google Scholar
7. For a special issue on this topic, see Macromol. Rap. Comm. 25, Issue 1 (2003).Google Scholar
8. Wijesundara, M. B. J., Fuoco, E., Hanley, L., Lang. 17, 5721 (2001).Google Scholar
9. Tepavcevic, S., Choi, Y., Hanley, L., J. Amer. Chem. Soc. 125, 2396 (2003).Google Scholar
10. Wijesundara, M. B. J., Ji, Y., Ni, B., Sinnott, S. B., Hanley, L., J. Appl. Phys. 88, 5004 (2000).Google Scholar
11. Shen, Z., Thomas, J. J., Averbuj, C., Broo, K. M., Engelhard, M., Crowell, J. E., Finn, M. G., Siuzdak, G., Anal. Chem. 73, 612 (2001).Google Scholar