Skip to main content Accessibility help

Columnar Structure Growth by Silicon Molecular Beam Epitaxy

  • Y. H. Xie (a1), G. H. Gilmcr (a1), E. A. Fitzgerald (a1) and J. Michel (a1)


Si columnar structures were fabricated using Si MBE on Si substrates with column sizes in the order of ∼ 100 Å. The objective is to explore a viable approach to fabricate quantum wire structures. The growth of the structures, which was due to the growth instability, was an excellent example of a self-limiting process. The dependence of column morphology on the critical parameters, e.g., Si molecular beam incident angle, substrate temperature, substrate rotation, speed, etc., were demonstrated. Comparison between the experimental and the computer simulation results demonstrated the importance of the latent heat related atom migration as compared to the normal surface diffusion at low substrate temperatures and several A/s beam fluxes. A substrate temperature window (≈125°C) was observed which allowed the fabrication of crystalline micro-columns on Si (100) substrates. RHEED studies indicated that the crystalline micro- columns were heavily twined. The twinning phenomenon was also observed in the computer simulation results and interpreted as a result of the reduction in twin formation energy due to the extremely small dimension of the columns. Thermal stability of the columnar structures is discussed. Finally, photoluminescence studies and some potential applications are also discussed.



Hide All
[1] Leamy, H. J., Gilmer, G. H., and Dirks, A. G., Current Topics in Material Science, Kaldis, E., edits, North Holland, 6, 309 (1980);
[2] Hashimoto, T., Okamoto, K., Hara, K., Kamiya, M., and Fujiwara, H., Thin Solid Films, 182, 197 (1989);
[3] Popovic, N., Nenadovic, T., Bogdanov, Z., Milic, M., and Petrovic, R., Thin Solid Films, 193/194, 453 (1990);
[4] Dirks, A. G., Wolters, R. A. M., and Nellisen, A. J. M., Thin Solid Films, 193/194, 201 (1990);
[5] Itoh, K., Kamiya, M., Hara, K., Hashimoto, T., Okamoto, K., and Fujiwara, H., Thin Solid Films, 195, 245 (1991);
[6] Stillinger, F. H. and Weber, T., Phys. Rev. B31, 5262 (1985);
[7] Gilmer, G. H., Grabow, M. H. and Bakker, A. F., Mater. Sci. Eng. B6, 101 (1990);
[8] Canham, L. T., Appl. Phys. Lett. 57 (10), 1046 (1990).


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed