Skip to main content Accessibility help

Colloidal CuInS2 Based Nanocrystals /TiO2 Nanotube Arrays Composite Solar Cells Fabrication and Testing

  • Vanga R. Reddy (a1), William Wilson (a1), Rick Eyi (a1), Jiang Wu (a1), M. O. Manasreh (a1), John Dixion (a2) and Andrew Wang (a2)...


To develop alternative and low cost photovoltaic technologies we have synthesized CuInS2 nanocrystals with tunable optical properties and characterization was carried out thoroughly with TEM, SEM, EDAX and XRD. Furthermore large self-organized arrays of TiO2 nanotubes were fabricated on Ti foil followed by simple electrochemical anodization technique and characterized their structure by SEM and then for the first time coupled both the nanocrystals and nanotubes to form a p-n junction type photovoltaic device. The current-voltage (I-V) characteristics of photovoltaic cells were measured to test the proof of concept. Some preliminary experiments showed that device generates some current upon illumination. However, in our case we fabricated a device without sandwiching any buffer or barrier layers in between nanocrystals and nanotube arrays. We have been optimizing our solar cells efficiency by improving quality of nanotubes and nanocrystals. Some of the interesting finding are presented and discussed.



Hide All
1. Nanu, M., Schoonman, J., and Goossens, A., Nanocomposite three-dimensional solar cells obtained by chemical spray deposition Nano Lett. 5, 1716, (2005)
2. Nanu, M., Schoonman, J., and Goossens, A., Inorganic nanocomposites of n- and p-type semiconductors: a new type of three dimensional solar cells Adv. Mater. 16, 453, (2004)
3. Nanu, M., Schoonman, J., and Goossens, A., Solar-energy conversion in TiO2 / CuInS2 nanocomposites Adv. Funct. Mater. 15, 95(2005)
4. Kuo, K. T., Liu, D.M., Chen, S. Y., Lin, C. C., Core-shell CuInS2/ZnS quantum dots assembled on short ZnO nanowires with enhanced photo-conversion efficiency, J. Mater. Chem., 19, 6780. (2009)
5. Courtel, F. M., Paynter, R. W., Marsan, B., Morin, M. Synthesis, characterization, and growth mechanism of n-type CuInS2 colloidal particles, Chem. Mater., 21, 3752, (2009)
6. Controlled Synthesis and Optical Properties of Colloidal Ternary Chalcogenide CuInS2 Nanocrystals, Zhong, H., Zhou, Y., Ye, M., He, Y., Ye, J., He, C., Yang, C., Li, Y., Chem. Mater., 20, 6434, (2008)
7. Highly Luminescent CuInS2/ZnS Core/Shell Nanocrystals: Cadmium-Free Quantum Dots for In Vivo Imaging, Chem. Mater., 21, 2422, (2009)
8. Zhong, H., Lo, S. S., Mirkovic, T., Li, Y., Ding, Y., Li, Y., Scholes, G. D., Noninjection gram-scale Synthesis of mondisperse pyramidal CuInS2 nanocrystals and their size-dependent properties, ACS Nano, 9, 5253, (2010)
9. Sonication-Assisted Synthesis of CdS Quantum-Dot-Sensitized TiO2 Nanotube Arrays with Enhanced Photoelectrochemical and Photocatalytic Activity, Xie, Y., Ali, G., Yoo, S. H., and Cho, S. O., ACS Applied Materials and Interfaces, 2, 2910, (2010)
10. Modified TiO2 nanotube arrays (TNTAs): progressive strategies towards visible light responsive photoanode, a review, A. E. Mohamed, S. Rohani, Energy & Environ. Scien., 4, 1065, (2011)
11. Anodic Growth of Highly Ordered TiO2 Nanotube Arrays to 134 μm in Length, Paulose, M., Shankar, K., Yoriya, S., Prakasam, H. E., Varghese, O. K., Mor, G. K., Latempa, T. A., Fitzgerald, A., Grimes, C. A., J. Phys. Chem B, 110, 16179, (2006)



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed