Skip to main content Accessibility help
×
Home

Collagenous Biocomposites for the Repair of Soft Tissue Injury

  • David Christiansen (a1), George Pins (a1), Ming Che Wang (a1), Michael G. Dunn (a2) and Frederick H. Silver (a1)...

Abstract

Results of implantation studies in a variety of animal tissue models demonstrate that the rate of biogradation of a collagen scaffold should parallel the rate of wound healing observed in particular anatomic sites. This rapid degradation maximizes tissue regeneration and minimizes encapsulation of the implant. The following paper reviews the effects of crosslinking on the rate of tissue ingrowth and regeneration. In addition, preliminary mechanical data on newly developed soluble type I collagen fibers is presented as a possible advance in the production of high strength collagen based tissue scaffolds.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Collagenous Biocomposites for the Repair of Soft Tissue Injury
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Collagenous Biocomposites for the Repair of Soft Tissue Injury
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Collagenous Biocomposites for the Repair of Soft Tissue Injury
      Available formats
      ×

Copyright

References

Hide All
(1) Birk, D.E., Silver, F.H., and Trelstad, R.L., In: The Cell Biology of the Extracellular Matrix, 2nd ed. edited by Hay, E.D. (Academic Press, N.Y., 1991) p. 221.
(2) Collins, R.L.L., Christiansen, D, Zazanis, G.A., and Silver, F.H., Journal of Biomedical Materials Research, 25, 267 (1991).
(3) Doillon, C.J., Whyne, C.F., Berg, R.A., Olsen, R.M., and Silver, F.H., Scanning Electron Microscopy III, 1313 (1984).
(4) Doillon, C.J., Whyne, C.F., Brandwein, S., and Silver, F.H., Journal of Biomedical Materials Research, 20, pp 1219 (1986).
(5) Doillon, C.J., and Silver, F.H., Biomaterials, Vol 7,3 (1986).
(6) Doillon, C. J., Silver, F.H., and Berg, R.A., Biomaterials 8,195 (1987).
(7) Doillon, C.J., Wasserman, A.J., Berg, R.A., and Silver, F.H., Biomaterials, 9, 91 (1988).
(8) Doillon, C.J., Silver, F.H., Olson, R.M., Kamath, C.Y., and Berg, R.A., Scanning Electron Microscopy, 2, No. 2,985 (1988).
(9) Dunn, M.G., Tria, A.J., Kato, Y.P., Bechler, J.R., Ochner, R.S., Zawadsky, J.P., and Silver, F.H., American Journal of Sports Medicine, In Press (1991).
(10) Goldstein, J.D., Tria, A.J., Zawadsky, J.P., Kato, Y.P., Christiansen, D., and Silver, F.H., Journal of Bone and Joint Surgery, 71–A, No. 8, 1183 (1989).
(11) Kato, Y.P., Christiansen, D.L., Hahn, R.A., Shieh, S-J., Goldstein, J.D., and Silver, F.H., Biomaterials, 10, 38 (1989).
(12) Kato, Y.P., and Silver, F.H., Biomaterials,11, 169 (1990).
(13) Kato, Y.P., Dunn, M.G., Zawadsky, J.P., Tria, A.J., and Silver, F.H., Journal of Bone and Joint Surgery, 73–A, No. 4, 561 (1991).
(14) Marks, M.G., Doillon, C.J., and Silver, F.H., Journal of Biomedical Materials Research, 25, 683 (1991).
(15) Rizvi, A.H., Wasserman, A.J., Zazanis, G., and Silver, F.H., Scanning Electron Microscopy, In press (1991).
(16) Silver, F.H., Doillon, C.J., Rojo, B., Olsen, R.M., Kamath, C.Y., and Berg, R.A. Materials Research Society Symposium Proceedings, 110, 371 (1989).
(17) Weadock, K., Olson, R.M., and Silver, F.H., Biomater. Med. Devices Artif. Organs, 11, 293 (1984).
(18) Wong, E., Christiansen, D., Rizvi, A.H., Geller, H.M., and Silver, F.H., Journal of Applied Biomaterials Vol.1, 225 (1990).
(19) Yannas, I.V., Orgill, D.P., Silver, J., Norregaard, T.V., Zervas, N.T., and Schoene, W.C., In: Advances in Biomedical Polymers (Plenum Press, N.Y., 1987) p. 1.

Collagenous Biocomposites for the Repair of Soft Tissue Injury

  • David Christiansen (a1), George Pins (a1), Ming Che Wang (a1), Michael G. Dunn (a2) and Frederick H. Silver (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed