Hostname: page-component-848d4c4894-mwx4w Total loading time: 0 Render date: 2024-06-25T01:00:24.855Z Has data issue: false hasContentIssue false

The Coercivity – Remanence Tradeoff in Nanocrystalline Permanent Magnets

Published online by Cambridge University Press:  15 March 2011

Laura H. Lewis
Affiliation:
Materials and Chemical Sciences Division, Energy Sciences and Technology Dept., Brookhaven National Laboratory, Upton, New York 11973-5000, USA
David C. Crew
Affiliation:
Materials and Chemical Sciences Division, Energy Sciences and Technology Dept., Brookhaven National Laboratory, Upton, New York 11973-5000, USA
Get access

Abstract

The energy product (BH)max is a figure of merit quantifying the maximum amount of useful work that can be performed by the magnet. The energy product is determined by the magnetic remanence and the coercivity which, as extrinsic properties, are determined by the magnets' microstructure. Thus, in principle, magnetic material microstructures may be tailored to obtain defined parameters to produce optimal permanent magnets. However, as asserted by the eponymous Murphy, “Nature favors the hidden flaw”. While there is still much undeveloped potential in nanomagnetic materials, with relevant length scales on the order of 100 Å, accumulating evidence strongly suggests that maximum remanence and maximum coercivity are mutually exclusive in nanocrystalline magnetic materials. Diverse experimental and computational results obtained from nanocrystalline Nd2Fe14B-based magnets produced by melt-spinning techniques and subjected to various degrees of thermomechanical deformation confirm this conclusion. Recent results obtained from temperature-dependent magnetic measurement, magnetic force microscopy and simple micromagnetic modeling will be reviewed and summarized. The results, while somewhat discouraging, do hint at possible materials design routes to sidestep the inherent performance limitations of the magnetic nanostructures.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]. Fuerst, C. D. and Brewer, E. G., J. Appl. Phys. 73 (1993) 5751.Google Scholar
[2]. Davies, H. A., J. Magn. Magn. Mater. 157/158 11 (1996).Google Scholar
[3]. Stoner, E. C. and Wohlfarth, E. P., Philos. Trans. Roy. Soc. London A 240 (1948) 599.Google Scholar
[4]. Kondorsky, E. J., J. Exp. Theor. Fiz. 10 (1940) 420.Google Scholar
[5]. Givord, D. and Rossignol, M. F., “Coercivity” Ch. 5 in Rare-earth Iron Permanent Magnets, Coey, J. M. D., Ed., Clarendon Press, Oxford (1996).Google Scholar
[6]. Lewis, L. H., Thurston, T. R., Panchanathan, V., Wildgruber, U. and Welch, D. O., J. Appl. Phys. 82 (7) (1997) 3430.Google Scholar
[7]. Kronmüller, H. and Schrefl, T., J. Magn. Magn. Mater., 129 (1994) 66.Google Scholar
[8]. Herzer, Giselher, Materials Science and Engineering A133 (1991) 1.Google Scholar
[9]. O'Handley, R. C., Modern Magnetic Materials, John Wiley & Sons, New York (2000) 294.Google Scholar
[10]. Coey, J. M. D., “Introduction” Ch. 1 in Rare-earth Iron Permanent Magnets, Coey, J. M. D., Ed., Clarendon Press, Oxford (1996).Google Scholar
[11]. Crew, D. C., Lewis, L. H. and Panchanathan, V., J. Magn. Magn. Mater. 223 (3) (2001) 261.Google Scholar
[12]. Crew, D.C., Lewis, L.H. and Panchanathan, V., J. Magn. Magn. Mater. in press.Google Scholar
[13]. Crew, D. C. and Lewis, L. H., IEEE Trans. Magn. in press.Google Scholar
[14]. Brown, W.F., Rev. Mod. Phys. 17 (1945) 15.Google Scholar
[15]. Aharoni, A., Rev. Mod. Phys. 34 (1962) 227.Google Scholar
[16]. Hirosawa, S. and Tsubokawa, Y., J. Magn. Magn. Mater. 84 (1990) 309.Google Scholar
[17]. Grossinger, R., Sun, X.K., Eibler, R., Buschow, K.H.J. and Kirchmayr, H.R., J. Magn. Magn. Mater. 58 (1986) 55.Google Scholar
[18]. Crew, D. C., Lewis, L. H., Welch, D. O., Panchanathan, V., J. Appl. Phys. 87 (2000) 6571.Google Scholar
[19]. Schrefl, T., Fidler, J. and Kronmüller, H., Phys. Rev. B 49 (9) (1994) 6100.Google Scholar
[20]. Griffiths, M. K., Bishop, J. E. L., Tucker, J. W. and Davies, H. A., J. Magn. Magn. Mater. 183 (1998) 49.Google Scholar
[21]. Donohue, M. J. and Porter, D. G. <URL: http://math.nist.gov/oommf/> version 1.1.+version+1.1.>Google Scholar
[22]. Schrefl, T., Schmidts, H. F., Fidler, J., Kronmüller, H., J. Appl. Phys. 73 (1993) 65106512.Google Scholar