Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-18T05:39:46.982Z Has data issue: false hasContentIssue false

Chromophore Dynamics in Sol-Gel Glasses and Xerogel Clad Fiber Optic Sensors

Published online by Cambridge University Press:  21 February 2011

Drew L'Esperance
Affiliation:
Department of Chemistry, University of California, Riverside CA 92521
Clarice A. Browne
Affiliation:
Department of Chemistry, University of California, Riverside CA 92521
Eric L. Chronister
Affiliation:
Department of Chemistry, University of California, Riverside CA 92521
Get access

Abstract

Time-resolved depolarization measurements are used to investigate rotational diffusion and optical energy transfer dynamics of chromophores incorporated into silica and aluminosilica solutions, gels, and glasses. The use of an organically doped sol-gel clad waveguide as a novel intrinsic fiber optic sensor device is also demonstrated, and advantages of time-resolved detection of the fiber optic sensor are illustrated.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Soileau, M.J., editor Materials for Optical Switches. Isolators and Limiters: (Proc SPIE 1105, 42, 1989)Google Scholar
2 McKiernan, J., Pouxviel, J-C., Dunn, B., and Zink, J., J. Phys. Chem. 93, 21292133 (1989) .Google Scholar
3 Hinsch, A. and Zastrow, A., Optical Materials Technology for Energy Efficiency and Solar Energy Conversion IX 208217 (Proc. SPIE 1272, 1990)Google Scholar
4 Perry, J.W., Khundkar, L.R., Coulter, D.R., Alvarez, D. Jr., Marder, S.R., Wei, T.H., Sence, M.J., Van Stryland, E.W., and Hagan, D.J., Organic Materials for Nonlinear Optics and Photonics. Messier, J. et al. , editors, (NATO ASI Series E, 194, 1991) pp. 369382.Google Scholar
5 Carmicheal, I., Hug, G.L., J. Phys. Chem. Ref. Data, 15, 1, (1986)Google Scholar
6 Seitz, W.R., CRC Critical Reviews in Analytical Chemistry, 19, 135173 (1988).Google Scholar
7 Mac Craith, B., McDonagh, C., O'Keeffe, G., Keyes, E., Vos., J., O'Kelly, B. and McGilp, J., Analyst, 118, 385388 (1993); and B. MacCraith, V. Ruddy, C. Potter, B. O'Kelly and J. McGilp, Electronics Letters, 27, 1247–1248 (1991)Google Scholar
8 Hench, L., West, J., Zhu, B., and Ochoa, R., Sol-Gel Optics, edited by MacKenzie, J. D. and Ulrich, D. (Proc. SPIE 1328 1990) p 230 Google Scholar
9 Dislich, H., J. Non-Cryst. Solids 57, 371 (1983)Google Scholar
10 Lakowicz, J.R., Principles of Fluorescence Spectroscopy. (Plenum, New York 1983)Google Scholar
11 Allen, N., Hayes, G., Riley, P. and Richards, A., J. Photochem. 38, 365373 (1987)Google Scholar
12 Basché, Th. and Brauchle, C. J.Phys.Chem. 95, 7130–7131(1991)Google Scholar
13 Förster, Th. Z. Naturforschung A4, 321 (1949)Google Scholar
14 Baumann, J. and Fayer, M.D., J. Chem. Phys. 85, 40874107 (1986)Google Scholar
15 L'Espérance, D. and Chronister, E.L., Chem. Phys. Lett. (1994), in press.Google Scholar
16 L'Espérance, D. and Chronister, E.L., Photopolymer Device Physics. Chemistry and Applications II (Proc. SPIE 1559 1991) pp. 56–64 Google Scholar
17 L'Espérance, D. and Chronister, E.L., J. Opt. Soc. Am. B, 9, 20412046 (1992)Google Scholar
18 Stein, A.D., Peterson, K.A., and Fayer, M.D., J. Chem. Phys. 92, 5622 (1990)Google Scholar