Hostname: page-component-8448b6f56d-42gr6 Total loading time: 0 Render date: 2024-04-23T07:24:45.737Z Has data issue: false hasContentIssue false

Chemically deposited antimony selenide thin films

Published online by Cambridge University Press:  01 February 2011

Y. Rodríguez-Lazcano
Affiliation:
Centro de Investigación en Energía, Universidad Nacional Autónoma de México Temixco, Morelos 62580, MÉXICO. mtsn@cie.unam.mx
Y. Peña
Affiliation:
Centro de Investigación en Energía, Universidad Nacional Autónoma de México Temixco, Morelos 62580, MÉXICO. mtsn@cie.unam.mx
M.T. S. Nair
Affiliation:
Centro de Investigación en Energía, Universidad Nacional Autónoma de México Temixco, Morelos 62580, MÉXICO. mtsn@cie.unam.mx
P. K. Nair
Affiliation:
Centro de Investigación en Energía, Universidad Nacional Autónoma de México Temixco, Morelos 62580, MÉXICO. mtsn@cie.unam.mx
Get access

Abstract

Chemical bath deposition of thin films of antimony selenide from aqueous solutions containing complexes of antimony with citrate, tartrate and thiosulfate as ligands and sodium selenosulfate as source of selenide is reported. The films obtained appear amorphous in the as-prepared form and become crystalline upon annealing at 300°C. The X-ray Diffraction (XRD) patterns of the annealed films show peaks attributable to Sb2Se3 and Sb2O3. Electron microprobe analyses have shown that the atomic ratio of Se/Sb is less than 1.5 in these films. The films are photoconductive and exhibit a high resistivity in the dark. Both direct (1.4 eV) and indirect (1.3-1.5 eV) band gaps are observed for the films.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Madelung, O. (editor) in Semiconductors: Other than group IV elements and III-V compounds (Springer-Verlag Berlin Heidelberg, 1992) p.50.Google Scholar
2. El-Shair, H. T., Ibrahim, A. M., El-Wahabb, E. Abd, Afity, M. A. and El-Salam, F. Abd, Vacuum, 42, 911 (1991).Google Scholar
3. Rajpure, K. Y. and Bhosale, C. H., Materials Chemistry and Physics, 62, 169 (2000).Google Scholar
4. Torane, A. P., Rajpure, K. Y. and Bhosele, C.H., Materials Chemistry and Physics, 61, 219 (2000).Google Scholar
5. Fernández, A. M. and Merino, M. G., Thin Solid Films, 366, 202 (2000).Google Scholar
6. Pramanik, P. and Bhattacharya, R. N., J. Solid State Chem., 44, 425 (1982).Google Scholar
7. Bhattacharya, R. N. and Pramanik, P., Solar Energy Materials, 6, 317 (1982).Google Scholar
8. Nair, P. K., Nair, M. T. S., García, V.M., Arenas, O.L., Peña, Y., Castillo, A., Ayala, I. T., GomezDaza, O., Sánchez, A., Campos, J., Hu, H., Suárez, R. and Rincón, M. E., Solar Energy Materials and Solar Cells, 52, 313 (1998).Google Scholar