Hostname: page-component-7bb8b95d7b-5mhkq Total loading time: 0 Render date: 2024-09-21T01:24:34.788Z Has data issue: false hasContentIssue false

Chemical Vapor Deposition of Al Films From Dimethylethylamine Alane on GaAs(100)2×4 Surfaces

Published online by Cambridge University Press:  15 February 2011

I. Karpov
Affiliation:
Center for Interfacial Engineering, University of Minnesota, Minneapolis, MN 55455
J. Campbell
Affiliation:
Center for Interfacial Engineering, University of Minnesota, Minneapolis, MN 55455
W. Gladfelter
Affiliation:
Center for Interfacial Engineering, University of Minnesota, Minneapolis, MN 55455
A. Franciosi
Affiliation:
Center for Interfacial Engineering, University of Minnesota, Minneapolis, MN 55455
Get access

Abstract

Chemical vapor deposition (CVD) of Al from dimethylethylamnine alane on atomically clean GaAs(100)2×4 surfaces has been investigated using an ultra-high-vacuum CVD reactor. Film composition, microstructure and growth rate were examined for deposition temperatures in the 100-500°C range. The results indicate reduced impurity incorporation at the lower deposition tenmperatures, and growth rates that are relatively temperatureindependent in the low-pressure regime examined (10−4 to 10−5 Torr). At temperatures ≥400°C the microstructure of films deposited by CVD and evaporation is remarkably similar, but at the lower deposition temperatures (∼150°C) the specific chemistry of the CVD process affects the film texture and preferential orientation.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Singer, P., Semicond. Intern., Feb., 89 (1996)Google Scholar
2. Hampden-Smith, M. J. and Kodas, T. T., Chem. Vapor Deposition 1, 8 (1995).Google Scholar
3. Licata, T. J., Colgan, E. G., Harper, J. M. E., Luce, S. E., IBM J. Res. Develop. 39, 419 (1995).Google Scholar
4. Ohba, T., MRS Bulletin 20, 46 (1995).Google Scholar
5. Singer, P., Semicon. Intern., Nov., 52 (1994).Google Scholar
6. Simmonds, M. and Gladfelter, W. L., in The Chemistry of Metal CVD. edited by Kodas, T. and Smith, M. H. (VHH, Weinheim, 1994), Ch.2.Google Scholar
7. Lai, W. Y. C., Cheung, K. P., Favreau, D. P., Case, C., Liu, R., Murray, R. G., Kwakman, L. F. T., and Huibregtse, D., in Proceedings of the 8th Intern. IEEE VLSI Multilevel Interconnection Conference, Santa Clara, CA, 1991, p. 89.Google Scholar
8. Simmonds, M. G., Phillips, E. C., Hwang, J. W., and Gladfelter, W. L., Chemtronics 5, 155(1991).Google Scholar
9. Chen, K. M., Castro, T., Franciosi, A., Gladfelter, W. L., and Cohen, P. I., Appl. Phys. Lett. 60, 2132 (1992).Google Scholar
10. Wilkie, J. H., Eyden, G. J. M. van, Frigo, D. M., Smit, C. J., Reuvers, P. J., Olsthoorn, S. M., and Driessen, F. A. J. M., in: Proc. of the 19th Int. Symposium on GaAs and Related Compounds (IOP, Bristol, 1993), p. 115; S.M. Olsthoorn, and F. A. J. M. Driessen, L. J. Giling, D. M. Frigo, and C. J. Smit, Appl. Phys. Lett. 60, 82 (1992).Google Scholar
11. Kamp, M., König, F., Morsch, G., and Lüth, H., J. Cryst. Growth 120, 124 (1992).Google Scholar
12. Karpov, I., Bratina, G., Sorba, L., Franciosi, A., Simmonds, M. G. and Gladfelter, W. L., J. Appl. Phys. 76, 3471 (1994).Google Scholar
13. Karpov, I., Venkateswaran, N., Bratina, G., Sorba, L., Gladfelter, W., and Franciosi, A., J. Vac. Sci. Technol. B 13, 2041 (1995); Y. Fan, I. Karpov, G. Bratina, L. Sorba, W. Gladfelter, and A. Franciosi, J. Vac. Sci. Technol. B 14, March/April (1996).Google Scholar
14. Simmonds, M. G., Taupin, I., and Gladfelter, W. L., Chemistry of. Mater.. 6, 935 (1994).Google Scholar
15. Karpov, I., Gladfelter, W., and Franciosi, A., submitted to J. Vac. Sci. Technol. B.Google Scholar
16. Karpov, I., Gladfelter, W., and Franciosi, A. (unpublished).Google Scholar
17. Massies, J., Etienne, P. and Linh, N. T., Surf. Sci. 80, 550 (1979).Google Scholar
18. Landgren, G., Ludeke, R., and Serrano, C., J. Cryst. Growth 60, 393 (1982).Google Scholar
19. Venkateswaran, N., Karpov, I., Gladfelter, W., and Franciosi, A., J. Vac. Sci. Technol. A, May/June (1996).Google Scholar
20. Kiely, C. J. and Cherns, D., Phil. Mag. A 59, 1 (1989).Google Scholar
21. Petroff, P.., Feldman, L. C., Cho, A. Y., and Williams, R., J. Appl. Phys. 52, 7317 (1981).Google Scholar
22. Vaidya, S. and Sinha, A. K., Thin Sol. Films, 75, 253 (1981).Google Scholar
23. Bhattaacharya, P. K., Oh, J. E., Singh, J., Biswas, D., Clarke, R., Passos, W. Dos, Merlin, R., Mestres, N., Chang, K. H. and Gibala, R., J. Appl. Phys. 67, 3700 (1990).Google Scholar
24. Sberveglieri, G., Canevari, V., Romeo, N., and Spaggiari, C., Mat. Res. Symp. Proc. 54, 675 (1986).Google Scholar
25. Angelis, R. J. De, Jacob, R. J., Funk, J. E., Thin Solid Films 202, 91 (1991).Google Scholar
26. Gladfelter, W. L., Boyd, D. C., and Jensen, K. F., Chemistry of Mater. 1, 339 (1989).Google Scholar