Skip to main content Accessibility help
×
Home

Chemical Etching of AlN and InAlN in KOH Solutions

  • C. B. Vartuli (a1), J. W. Lee (a1), J. D. MacKenzie (a1), S. J. Pearton (a1), C. R. Abernathy (a1), J. C. Zolper (a2), R. J. Shul (a2) and F. Ren (a3)...

Abstract

Wet chemical etching of A1N and InxAl1-xN was investigated in KOH-based solutions as a function of etch temperature, and material quality. The etch rates for both materials increased with increasing etch temperatures, which was varied from 20 °C to 80 °C. The crystal quality of A1N prepared by reactive sputtering was improved by rapid thermal annealing at temperatures to 1100 °C with a decreased wet etch rate of the material measured with increasing anneal temperature. The etch rate decreased approximately an order of magnitude at 80 °C etch temperature after a 1100 °C anneal. The etch rate for In0.19Al0.81N grown by Metal Organic Molecular Beam Epitaxy was approximately three times higher for material on Si than on GaAs. This corresponds to the superior crystalline quality of the material grown on GaAs. Etching of InxAl1-xN was also examined as a function of In composition. The etch rate initially increased as the In composition changed from 0 to 36%, and then decreased to 0 Å/min for InN. The activation energy for these etches is very low, 2.0 ± 0.5 kcal•mol-1 for the sputtered A1N. The activation energies for InAIN were dependent on In composition and were in the range 2–6 kcal mol-1. GaN and InN layers did not show any etching in KOH at temperatures up to 80 °C.

Copyright

References

Hide All
1. Nakamura, S., Senoh, M., and Mukai, T., Jpn. J. Appl. Phys. 30, L1708 (1991).
2. Binari, S.C., Rowland, L.B., Kruppa, W., Kelner, G., Doverspike, K., and Gaskill, D.K., Electron. Lett. 30, 1248 (1994).
3. Khan, M.A., Shur, M.S., and Chen, Q., Electron. Lett. 31, 2130 (1995).
4. Khan, M.A., Kuznia, J.N., Bhattarai, A.R., and Olson, D.T., Appl. Phys. Lett. 62, 1248 (1993).
5. Nakamura, S., Senoh, M., and Mukai, T., Appl. Phys. Lett. 62 2390 (1993).
6. Akasaki, I., Amano, H., Kito, M., and Kiramatsu, K., J. Lumin. 48/49, 666 (1991).
7. Nakamura, S., Senoh, M., Iwasa, N., and Nagahama, S., Appl. Phys. Lett. 67, 1868 (1995).
8. Zolper, J.C., Baca, A.G., Shul, R.J., Wilson, R.G., Pearton, S.J. and Stall, R.A., Appl. Phys. Lett. 68, 166 (1996).
9. Nakamura, S., Senoh, M., Nagahama, S., Iwasa, N., Yamada, T., Matsushita, T., Kiyoku, H. and Sugimoto, Y., Jap. J. Appl. Phys. 35 L74 (1996).
10. Taylor, K.M. and Lenie, C., J. Electrochem. Soc. 107 308 (1960).
11. Long, G. and Foster, L.M., J. Am. Ceram. Soc. 42 53 (1959).
12. Barrett, N.J., Grange, J.D., Sealy, B.J. and Stephens, K.G., J. Appl. Phys. 57 5470 (1985).
13. Aita, C.R. and Gawlak, C.J., J. Vac. Sci. Technol. A 1 403 (1983).
14. Kline, G.R. and Lakin, K.M., Appl. Phys. Lett. 43 750 (1983).
15. Pauleau, T., J. Electrochem. Soc. 129 1045 (1982).
16. Sheng, T.Y., Yu, Z.Q. and Collins, G.J., Appl. Phys. Lett. 52 576 (1988).
17. Mileham, R.J., Pearton, S.J., Abernathy, C.R., MacKenzie, J.D., Shul, R.J. and Kilkoyne, S.P., Appl. Phys. Lett. 67, 1119 (1995).
18. Guo, Q.X., Kato, O. and Yoshida, Y., J. Electrochem. Soc. 139 2008 (1992).
19. Zolper, J.C., Hagerott-Crawford, M., Howard, A.J., Rainer, J. and Hersee, S.D., Appl. Phys. Lett. 68, 200 (1996).
20. Lin, M.E., Sverdlov, B.N. and Morkoc, H., Appl. Phys. Lett. 63, 3625 (1993).
21. Zolper, J.C., Reiger, D.J., Baca, A.G., Pearton, S.J., Lee, J.W., Stall, R.A., Appl. Phys. Lett, (in press).
22. Abernathy, C.R., J. Vac. Sci. Technol. A 11 869 (1993).
23. Abernathy, C.R., Mat. Sci. Eng. Rep. 14, 203 (1995).

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed