Hostname: page-component-7bb8b95d7b-2h6rp Total loading time: 0 Render date: 2024-09-20T03:56:29.121Z Has data issue: false hasContentIssue false

Charge Trapping Properties of Thin Plasma Nitrided Oxides Induced by Nitrogen and Hydrogen Incorporation

Published online by Cambridge University Press:  22 February 2011

C. Plossu
Affiliation:
Laboratoire de Physique de la Matiere, URA-CNRS 0358, Institut National des Sciences Appliquees de Lyon, 20 Avenue Albert Einstein, F 69621, Villeurbanne Cedex, France
F. Seigneur
Affiliation:
Laboratoire de Physique de la Matiere, URA-CNRS 0358, Institut National des Sciences Appliquees de Lyon, 20 Avenue Albert Einstein, F 69621, Villeurbanne Cedex, France
B. Balland
Affiliation:
Laboratoire de Physique de la Matiere, URA-CNRS 0358, Institut National des Sciences Appliquees de Lyon, 20 Avenue Albert Einstein, F 69621, Villeurbanne Cedex, France
B. Piot
Affiliation:
CNET/CNS, France Telecom, Chemin du Vieux-Chene, BP98, 38243 Meylan Cedex, France.
A. Straboni
Affiliation:
CNET/CNS, France Telecom, Chemin du Vieux-Chene, BP98, 38243 Meylan Cedex, France.
Get access

Abstract

In this work, we report the effects of an ammonia plasma nitridation on the charge trapping properties of thin SiO2 films in correlation with their nitrogen and hydrogen contents. Electron traps characteristics were determined by die avalanche injection technique. Hydrogen contents were measured by Elastic Recoil Detection analysis (ERDA). Nitrogen depth profiles were obtained with Auger spectroscopy. It is shown that the bulk electron trapping properties are essentially controlled by the specificity of hydrogen and nitrogen incorporation in the SiO2 films during the ammonia plasma process. For short nitridation times, an increase of hydrogen related electron trap densities is observed in good agreement with hydrogen ERDA measurements. However hydrogen concentration never exceeds 3 at% and can be scaled down by a short time post-nitridation anneal in oxygen, to a level comparable indeed inferior to that of a non-nitrided oxide. For heavy nitridation, an additional electron trap is detected which could be associated to the presence of nitrogen in the bulk of SiO2.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Pan, P., J. Appl. Phys. 61, 284 (1987).Google Scholar
2. Habraken, F. H. P. M., Evers, E. J., Kuiper, A. E. J., Appl. Phys. Lett. 44, 1 (1984).Google Scholar
3. Hori, T., Iwasaki, H., Naito, Y., Esaki, E., IEEE Trans. Electron Devices 34, 2238 (1987).Google Scholar
4. Hori, T., Iwasaki, H. and Tsuji, K., IEEE Trans. Electron Devices 35, 904 (1988).Google Scholar
5. Wang, W., Jajaraman, R., Sodini, C. G., IEEE Trans. Electron Devices 35, 935 (1988).Google Scholar
6. Debenest, P., Barla, K., Straboni, A. and Vuillermoz, B., Appl. Surf. Sci. 36, 196 (1989).Google Scholar
7. Fazan, P., Dutoit, M., Ilegems, M., presented at INFOS'87, Leuven, Belgium, 1987.Google Scholar
8. Balland, B., Glachant, A., Bureau, J.C., Plossu, C., Thin Solid Films 190, 103 (1990).Google Scholar
9. Terry, F. L., IEEE Trans. Electron Devices Letters 4, 6 (1986).Google Scholar
10. Dunn, G. J., Jajaraman, R., Yang, W., Sodini, C. G., Appl. Phys. Lett. 52, 1713 (1988).Google Scholar
11. Lai, S.K., Lee, J., Dham, V. K., IEDM 83 proceedings, 190 (1983).Google Scholar
12. Morimoto, T., Momose, H. S., Yamabe, K., Iwai, H., ESSDERC proceedings, 73 (1990).Google Scholar
13. Yankova, A., Thanh, L. D., Balk, P., Solid State Electronics 30, 939 (1987).Google Scholar
14. Severi, M., Impronta, M., Appl. Phys. Lett. 21, 1702 (1987).Google Scholar
15. Harstein, A., DiMaria, D. J., Wong, D. W., Kuzca, J.A., J. Appl. Phys. 51, 3860 (1980).Google Scholar
16. Harstein, A., Young, D. R., Appl. Phys. Lett. 38, 631 (1981).Google Scholar
17. Lai, S. K., Wong, D. W., Harstein, A., J. Electrochem. Soc. 129, 2042 (1982).Google Scholar
18. Naito, Y., Hori, T., Iwasaki, H., Esaki, H., J. Vac. Sci. Techno. B5, 633 (1987).Google Scholar
19. Hori, T., Iwasaki, H., Tsuji, T., IEEE Trans. Electron Devices 36, 2571 (1989).Google Scholar
20. Hori, T., Iwasaki, H., IEEE Trans. Electron Devices 9, 168 (1988).Google Scholar
21. Ma, Z. J., Liu, Z. H., Lai, P. T., Fleischer, S., Cheng, Y. C., Sol. St. Elect. 35, 95 (1992).Google Scholar
22. Meinecke, R. J., Wasserman, Y., MRSGoogle Scholar
23. Hwang, H., Ting, W., Kwong, D. L., Lee, J., MRS Symp. Proc. 224, 379 (1991).Google Scholar
24. Pio, F., Bellafiore, N., Riva, C., Fourth Esprit Workshop proc. 1 (1992).Google Scholar
25. Chang, S. T., Johnson, N. M., Lyon, S. A., Appl. Phys. Lett. 44, 316 (1984).Google Scholar
26. Dooms, E. E., Heyns, M. M. and DeKeersmaecker, R. F., Appl. Surf. Sci. 39, 227 (1989).Google Scholar
27. Pantelides, S. T., Thin Solid Films, 89, 103 (1982).Google Scholar