Skip to main content Accessibility help
×
Home

Charge Carrier TransportMechanism of ð-Conjugated Organic Materials

  • Seong Hyun Kim (a1), Yong Suk Yang (a1), Jung Hun Lee (a1), Sang Chul Lim (a1) and Taehyoung Zyung (a1)...

Abstract

The complex dielectric constants of several π-conjugated materials were measured, and generalized Langevin equation was used to analyze the dielectric behavior in the frequency domain. From the results of the fitting the experimental data using the generalized Langevin equation, we suggest that the charge carriers are electrically screened by the neighboring charges through the structural relaxation, and the carriers are not interact each other. We confirmed that the generalized Langevin equation offers a very good approach to analyze and understand the transport properties of charge carriers in π-conjugated materials.

Copyright

References

Hide All
1. Kudo, K., Wang, D.X., Lizuka, M., Kuniyoshi, S. and Tanaka, K., Synth. Met. 111, 11 (2000).
2. Podzorvo, V., Pudalov, V. M. and Gershenson, M. E., Appl. Phy. Lett. 82, 1739 (2003).
3. Lu, M.-H. and Sturm, J. C., J. Appl. Phys. 91, 595 (2002).
4. Feller, F., Geschke, D. and Monkman, A. P., J. Appl. Phys. 93, 2884 (2003).
5. Rakhmanova, S. V. and Conwell, E. M., Appl. Phys. Lett. 76, 3822 (2000).
6. Campbell, A. J., Bradley, D. D. C., Antoniadis, H., Inbasekaran, M., Wu, W.W. and Woo, E. P., Appl. Phys. Lett. 76, 1734 (2000).
7. Street, R. A., Knipp, D. and Völkel, A. R., Appl. Phys. Lett. 80, 1658 (2002).
8. Campbell, I. H., Smith, D. L., and Ferraris, J. P., Appl. Phys. Lett. 66, 3030 (1995).
9. Campbell, I. H., Smith, D. L., Neef, C. J., and Ferraris, J. P., Appl. Phys. Lett. 72, 2565 (1998).
10. Yu, G., Gao, Y., Zhang, C., Li, Y., Gao, J., and Heeger, A. J., Appl. Phys. Lett. 73, 111 (1998).
11. Kim, S. H., Choi, K. H., Lee, H. M., Hwang, D. H., Do, L.M., Chu, H. Y., and Zyung, T., J. Appl. Phys. 87, 882 (2000).
12. Kim, S. H., Zyoung, T., Chu, H. Y., Do, L. M., Hwang, D. H., Phys. Rev. B 61, 15854 (2000).
13. Jonscher, A. K., Dielectric Relaxation in Solids (Chelsea Dielectrics, London, 1983), p 37.
14. Brüesch, P., Strssler, S., and Zeller, H. R., Phys. Status Solidi A31, 217 (1975).
15. Zyung, T. and Jung, S. D., ETRI Journal 18, 181 (1996).
16. Kim, S.H., Yang, Y. S., Kim, H. J., Ryu, N.Y., andJang, M. S., Ferroelectrics 196, 261 (1997).
17. Nagashima, H.N., Onody, R. N., and Faria, R.M., Phys. Rev. B 59, 905 (1999).
18. Ito, K., Tanabe, Y., Akagi, K., and Shirakawa, H., Phys. Rev. B. 45, 1256 (1992).
19. Lepienski, C. M., Faria, R. M., and Ferreira, G. F. Leal, Appl. Phys. Lett., 70, 1906 (1997).
20. Rehawald, W., Kiess, H., and Binggeli, B., Z. Phys. B 68, 143 (1987).
21. Jonscher, A. K., Universal Relaxation Law (Chelsea Dielectrics, London, 1996), p 311.
22. Jonscher, A. K., Dielectric Relaxation in Solids (Chelsea Dielectrics, London, 1983), p 306.

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed