Skip to main content Accessibility help

Charge Carrier Absorption in Doped Microcrystalline Silicon Films

  • M. Heintze (a1), E. Lotter (a2), C.-D. Abel (a1) and M. B. Schubert (a1)


The infrared absorption in doped microcrystalline silicon thin films is analyzed by modelling the complex permittivity as the sum of the contributions resulting from interband transitions and from absorption by charge carriers. Their density and the drift mobility within grains is described by free carrier motion according to the Drude theory. However, for a good fit to experimental data a small trapping energy, reflecting the effect of grain boundaries, is included in the model. By comparing results obtained from the analysis of infrared data with conductivity and Hall measurements in films grown in a very high frequency (VHF) plasma and by hot-wire chemical vapor deposition (CVD), we show that infrared transmission measurements provide a simple access to transport parameters in these films.



Hide All
1. Oda, S., Noda, J., and Matsumura, M. in Amorphous Silicon Technology, ed. by Madan, A., Thompson, M.J., Taylor, P.C., LeComber, P.G., and Hamakawa, Y., (Mater. Res. Soc. Symp. Proc. 118, Pittsburgh PA 1988) p. 117
2. Middya, A.R., Guillet, J., Perrin, J., Lloret, A., and Bourée, J.E., Proc. 13th European Photovoltaic Solar Energy Conference (1995), ed. by Freiersleben, W., Palz, W., Ossenbrink, H.A., and Helm, P., (H.S. Stephens & Ass., Bedford UK) p. 1704
3. Usui, S. and Kiguchi, M., J. Non-Cryst. Sol., 34, 1 (1979)
4. Mishima, Y., Hirose, M., and Osaka, Y., J. Appl. Phys. 51, 1157 (1980)
5. Finger, F., Prasad, K., Dubail, S., Shah, A., Tang, X.-M., Weber, J., and Beyer, W. in Amorphous Silicon Technology - 1991 edited by Madan, A., Hamakawa, Y., Thompson, M.J., Taylor, P.C. and LeComber, P.G. (Mat. Res. Soc. Symp. Proc. 219, Pittsburgh, PA 1991), p. 383
6. Peter, K., Willeke, G., Prasad, K., Shah, A., and Bucher, E., Phil. Mag. B 69, 197 (1994)
7. Heintze, M. and Schmitt, M. in Amorphous Silicon Technology - 1996, ed. by Hack, M., Schiff, E.A., Wagner, S., Matsuda, A., and Schropp, R. (Mat. Res. Soc. Symp. Proc 420, Pittsburgh PA), to be published
8. Wanka, H.N., Zedlitz, R., Heintze, M., and Schubert, M.B. in Proc. 13th European Photovoltaic Solar Energy Conference, ed. by Freiesleben, W., Palz, W., Ossenbrink, H.A., and Helm, P., (H.S. Stephens and Ass., UK 1995), p. 1753
9. Swanepoel, R., J. Phys. E: Sci. Instrum. 16, 1214 (1983)
10. Heintze, M., Abel, C.-D., Lotter, E., and Schubert, M.B., to be published.
11. Willeke, G., in Amorphous and Microcrystalline Semiconductor Devices, Vol. II edited by Kanicki, J. (Artech House, Boston 1992) p. 55
12.Semiconductors” by Smith, R.A., (Cambridge at the University Press, 1959)
13. Stutzmann, M., Biegelsen, D.K., and Street, R.A., Phys. Rev. B 35, 5666 (1987)
14. Pierz, K., Fuhs, W., and Mell, H., Phil. Mag. B 63, 133 (1991)
15. Heintze, M. and Zedlitz, R., J. Non-Cryst. Sol. 164–166, 55 (1993)
16. Curtins, H. and Vepřek, S., Sol. State Commun., 57, 215 (1986)
17. Komuna, M., Curtins, H., Sarott, F. -A., and Vepřek, A., Phil. Mag. B 55, 377 (1987)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed