Hostname: page-component-8448b6f56d-tj2md Total loading time: 0 Render date: 2024-04-23T13:11:03.469Z Has data issue: false hasContentIssue false

Characterization of Zirconium - Diamond Interfaces

Published online by Cambridge University Press:  15 February 2011

P. K. Baumann
Affiliation:
Department of Physics, North Carolina State University, Raleigh, NC 27695-8202
S. P. Bozeman
Affiliation:
Department of Physics, North Carolina State University, Raleigh, NC 27695-8202
B. L. Ward
Affiliation:
Department of Physics, North Carolina State University, Raleigh, NC 27695-8202
R. J. Nemanich
Affiliation:
Department of Physics, North Carolina State University, Raleigh, NC 27695-8202
Get access

Abstract

Thin Zr films were deposited on natural single crystal diamond (100) substrates by ebeam evaporation in ultra-high vacuum (UHV). Before metal deposition the surfaces were cleaned by UHV anneals at either 500°C or 1150°C. Following either one of these treatments a positive electron affinity was determined by means of UV photoemission spectroscopy (UPS). Depositing 2Å of Zr induced a NEA on both surfaces. Field emission current - voltage measurements resulted in a threshold field (for a current of 0.1 µA) of 79 V/µm for positive electron affinity diamond surfaces and values as low as 20 V/µm for Zr on diamond.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Himpsel, F.J., Eastman, D.E., Heimann, P. and van der Veen, J.F., Phys Rev. B 24, 7270 (1981).Google Scholar
2. Pate, B.B., Hecht, M.H., Binns, C., Lindau, I. and Spicer, W.E., J. Vac. Sci. Technol. 21, 364 (1982).Google Scholar
3. Baumann, P.K., Humphreys, T.P. and Nemanich, R.J., in Diamond, SiC and Nitride Wide Bandgap Semiconductors, edited by Carter, C.H., Gildenblat, G., Nakamura, S., Nemanich, R.J., (Mater. Res. Soc. Proc. 339, Pittsburgh, PA, 1994) 6974.Google Scholar
4. van der Weide, J. and Nemanich, R.J., Appl. Phys. Lett. 62 (1993) 1878.Google Scholar
5. van der Weide, J., Zhang, Z., Baumann, P.K., Wensell, M.G., Bernholc, J. and Nemanich, R.J., Phys. Rev. B 50 (1994) 5803.Google Scholar
6. Baumann, P.K. and Nemanich, R.J., Proc. of the 5th European Conference on Diamond, Diamond-like and Related Materials, edited by Bachmann, P.K., Buckley-Golder, I.M., Glass, J.T., Kamo, M.: J. Diamond Rel. Mat., 4 (1995) 802.Google Scholar
7. van der Weide, J. and Nemanich, R.J., J. Vac. Sci. Technol. B 10 (1992) 1940.Google Scholar
8. van der Weide, J. and Nemanich, R.J., Phys. Rev. B, 49 (1994) 13629.Google Scholar
9. Baumann, P.K. and Nemanich, R.J., Appl. Surf. Sci., accepted for publication.Google Scholar
10. Baumann, P.K. and Nemanich, R.J., in Diamond for Electronic Applications, edited by Beetz, C., Collins, A., Das, K., Dreifus, D., Humphreys, T., Pehrsson, P., (Mater. Res. Symp. Soc. Proc. MRS, Pittsburgh, PA 1996), accepted for publication.Google Scholar
11. Baumann, P.K., Humphreys, T.P., Nemanich, R.J., Ishibashi, K., Parikh, N.R., Porter, L.M. and Davis, R.F., Proc. of the 4th European Conference on Diamond, Diamond-like and Related Materials, edited by Bachmann, P.K., Buckley-Golder, I.M., Glass, J.T., Kamo, M.: J. Diamond Rel. Mat. 3 (1994) 883.Google Scholar
12. Mead, C.A. and McGill, T.C., Phys. Lett. 58A (1976) 149.Google Scholar
13. Himpsel, F.J., Eastman, D.E. and van der Veen, J.F., J. Vac. Sci. Technol. 17 (1980) 1085.Google Scholar
14. Himpsel, F.J., Heimann, P. and Eastman, D.E., Sol. State Commun. 36, 631 (1980).Google Scholar
15. Glesener, J.W., Morrish, A.A. and Snail, K.A., J. Appl. Phys. 70 (1991) 5144.Google Scholar
16. Geis, M.W., Rathman, D.D., Ehrlich, D.J., Murphy, R.A. and Lindley, W.T., IEEE Electron Device Lett. 8 (1987) 341.Google Scholar
17. Shiomi, H., Nakahata, H., Imai, T., Nishibayashi, Y. and Fujimori, N., Jpn. J. Appl. Phys. 28 (1989) 758.Google Scholar
18. Tachibachi, T., Williams, B.E. and Glass, J.T., Phys. Rev. B 45 (1992) 11975,Google Scholar
19, Hicks, M.C., Wronski, C.R., Grot, S.A., Gildenblat, G.S., Badzian, A.R., Badzian, T. and Messier, R., J. Appl. Phys. 65 (1989) 2139.Google Scholar
20. Grot, S.A., Lee, S., Gildenblat, G.S., Hatfield, C.W., Wronski, C.R., Badzian, A.R., Badzian, T. and Messier, R., J. Mater. Res. 5 (1990) 2497.Google Scholar
21. Pate, B.B., Spicer, W.E., Ohta, T. and Lindau, I., J. Vac. Sci. Technol. 17 (1980) 1087.Google Scholar
22. Marchywka, M., Pehrsson, P.E., Binari, S.C. and Moses, D., J. Electrochem. Soc., 140, No. 2 (1993) L19.Google Scholar
23. Rhoderick, E.H. and Williams, R.H., Metal-Semiconductor Contacts Clarendon, Oxford, (1988).Google Scholar
24. Erwin, S.C. and Pickett, W.E., Surf. Coat. Technol. 47 (1991) 487.Google Scholar
25. Erwin, S.C. and Pickett, W.E., Solid State Commun. 81 (1992) 891.Google Scholar
26. Pickett, W.E. and Erwin, S.C., Phys. Rev. B 41 (1990) 9756.Google Scholar
27. Pickett, W.E. and Erwin, S.C., Superlatt. Microsruct. 7 (1990) 335.Google Scholar
28. Pickett, W.E., Pederson, M.R. and Erwin, S.C., Mater. Sci. Eng. B14 (1992) 87.Google Scholar
29. Lambrecht, W.R.L., Physica B 185 (1993) 512.Google Scholar
30. Geis, M.W., Twichell, J.C., Macaulay, J., Okano, K., Appl. Phys. Lett. 67 (1995) 1.Google Scholar
31. Zhu, W., Kockanski, G.P, Jin, S. and Siebels, L., J. of Appl. Phys., in pressGoogle Scholar
32. Bozeman, S.P., Baumann, P.K., Ward, B.L., Powers, M.J., Cuomo, J.J, Nemanich, R.J. and Dreifus, D.L, Proc. of the 6th European Conference on Diamond, Diamond-like and Related Materials, edited by Bachmann, P.K., Buckley-Golder, I.M., Glass, J.T., Kamo, M.: J. Diamond Rel. Mat. (1996), accepted for publication.Google Scholar
33. Gomer, R., Field Emission and Field Ionization, Cambridge, MA, (1961).Google Scholar